

A Slew/Load-Dependent Approach to Single-variable Statistical Delay Modeling

Tau Workshop 2014 Brandon Bautz & Swamy Lokanadham Cadence

Abstract

- Industrial demand for higher performing digital semiconductor products has highlighted the clear need to reduce design guard-band without sacrificing time-to-market.
- Improvements to on-chip variation modeling are a driving component of this guard-band reduction strategy.
- In this presentation we review current industry approaches to on-chip variation modeling
- introduce Statistical OCV (SOCV) method, which utilizes a single statistical parameter representing sigma variation. SOCV extends existing single-variable statistical approaches by adding slew and load-dependent sigma per timing arc.
- We highlight accuracy benefits of the slew/load dependency by presenting test circuit simulation results using Monte-Carlo simulation as a reference.
- SOCV implementation details including target performance metrics, user-interface details, and library characterization process. Enhancements to the industry standard lib format are also introduced.

Agenda

Review of Industry variation modeling approaches

Introduction to Load/slew-dependent SOCV

SOCV implementation details

Industry variation modeling approaches

Customer demands

- Reduce pessimism in variation modeling
- Faster runtimes than traditional SSTA
- Improved correlation with Spice (and silicon)

Current short-comings:

- OCV
 - Excessive over/under derate
- SSTA
 - CPU-intensive (analysis & characterization)
- AOCV
 - GBA depth count over-derates
 - Lacks slew/load dependence

Statistical OCV (SOCV) Overview

SOCV highlights

- Statistical parameter as a delay sigma variation
- A function of input slew and output load
- Arc level granularity
- Accuracy and correlation with Spice (silicon)
- Close correlation of GBA and PBA

Benefits

- Close correlation to ideal derate profile
- Fast runtimes approaching traditional STA
- In-house characterization through
 Variety or reuse of existing AOCV tables

Statistical OCV - SOCV

- A simplified flavor of SSTA using single local variation (single variable SSTA)
- Accurately captures statistical cancellation of uncorrelated variations
- Solves the major limitation of AOCV
 - Slew/load dependency of variation
 - Assumption of same cell/load in the path
- Provides near-SSTA accuracy with touch-n-feel of STA
- Small additional cost of runtime/memory over AOCV
- Signoff-accurate SI handling

SOCV Modeling

- Models each cell for variation
 - Per timing arc
 - Per load
 - Per slew
- Delay sigmas are correctly derived vs. AOCV derates
 - AOCV derates based on unrealistic homogeneous structures
 - AOCV lacks slew / load dependence
- Faster generation than AOCV
 - Does not require stage by stage characterization
 - Cannot extend AOCV easily to allow load and slew
- Excellent correlation with Spice (Monte Carlo)

Correlation to Monte-Carlo Spice Simulation

The plot below shows the Arrival Time values from SSTA PBA, SOCV PBA and AOCV PBA and Monte Carlo SPICE for a few paths in a 28nm testcase

SOCV with Slew/Load Dependency

Slew/Load Dependency Accuracy Improvement

Slew dependency on Variation

Internal SOCV library format

in partnership with TSMC

Slew, load dependent sigma per timing arc (pin, related_pin, when) for delay, slew & constraint

SOCV Format		
<u>Keyword</u>	<u>Parameter</u>	
version	v0.1	
sigma_unit	ps	
distance_unit	um	
begin	cell wire spatial	
object_type	design library	
object_spec library_name	e cell_name	
pin	pin_name	
(output c	constraint_pin)	
pin_direction	rise fall	
related_pin	pin_name	
related_direction	rise fall	
type removal re	delay slew setup hold covery	
when	when_condition	
related_transition	cell_transition	
constraint_transition	constraint_transition	
output_loading	cell_loading wire_loading	
distance	cell_distance	
sigma	1-sigma value	
end	cell wire spatial	

```
Example
object_type: library
object_spec: lib_0p885v_125c_cworst/INVD1
pin: Z
pin_direction: rise
related pin: I
related_direction: fall
type: delay
When: ""
input_transition: 0.0035 0.0133 0.0327 0.0717 0.1496 0.3053 0.6269
output_loading: 0.00023 0.00081 0.00196 0.00426 0.00887 0.01807
    0.03649
distance:
                              (slew 0.0035, loads 0.00023,...,0.03649)
sigma:
1.1 1.2 1.3 1.4 1.5 1.6 1.7
2.1 2.2 2.3 2.4 2.5 2.6 2.7
                              (slew 0.6269, loads 0.00023,...,0.03649)
7.1 7.2 7.3 7.4 7.5 7.6 7.7
```

Liberty Variation Format (LVF)

Slew/Load Dependent Delay Sigmas

2.1.1.4 ocv_sigma_cell_rise and ocv_sigma_cell_fall groups

Similar to cell_rise and cell_fall groups, the ocv_sigma_cell_rise and ocv_sigma_cell_fall groups are defined under timing group.

While the cell_rise and cell_fall groups specify nominal delay value, the ocv_sigma_cell_rise and ocv_sigma_cell_fall groups specify absolute amount of variation offset values from nominal delay **at one sigma**.

Delay value at +/- sigma can be calculated using variation delay values:

```
rise delay at +sigma = nominal rise delay + ocv_sigma_cell_rise value
fall delay at +sigma = nominal fall delay + ocv_sigma_cell_fall value
rise delay at -sigma = nominal rise delay - ocv_sigma_cell_rise value
fall delay at -sigma = nominal fall delay - ocv_sigma_cell_fall value
```

This table can be 3-dimensional, 2-dimensional, 1-dimensional or scalar.

The table index should be input_net_transition and total_output_net_capacitance. The table index_3 should be related out total output net capacitance

Liberty Variation Format (LVF)

Slew/Load Dependent Transition Sigmas

Similar to rise_transition and fall_transition groups, the ocv_sigma_rise_transition and ocv_sigma_fall_transition groups are defined under timing group.

While the rise_transition and fall_transition groups specify nominal output transition value, the ocv_sigma_rise_transition and ocv_sigma_fall_transition groups specify absolute amount of variation offset values from nominal output transition at one sigma.

Output transition value at +/- sigma can be calculated using variation output transition values:

```
rise transition at +sigma = nominal rise transition + ocv_sigma_rise_transition value fall transition at +sigma = nominal fall transition + ocv_sigma_fall_transition value rise transition at -sigma = nominal rise transition - ocv_sigma_rise_transition value fall transition at -sigma = nominal fall transition - ocv_sigma_fall_transition value
```

This table can be 3-dimensional, 2-dimensional, 1-dimensional table and scalar.

The valid values for index variable_1 and variable_2 are input_net_transition and total output net capacitance.

The valid value for index variable_3 is related_out_total_output_net_capacitance.

Example SOCV Report

The format below is set as follows:

```
set timing_report_enable_verbose_ssta_mode true
set timing_set_nsigma_multiplier 3
set report_timing_format [list \
   timing_point edge cell delay_mean delay_sigma delay
   arrival_mean arrival_sigma arrival pin_location]
```


SOCV Performance Objectives

13M instance	Runtime (hr:min)	Memory
AOCV	0:59	28GB
SOCV	1:15	33GB

cādence®

SOCV Accuracy Results

Tempus	Spice	% Diff	Tempus Sigma with	Spice	
Nominal	Nominal	Nominal	Slew variation	Sigma	% Diff Sigma
573.5	601.1	-4.59%	23.824	25.2	-5.4%
1100.2	1143.9	-3.82%	51.409	50.9	1.0%
640.9	667.2	-3.94%	17.355	18.3	-5.0%
887.8	897.9	-1.13%	20.716	19.7	4.9%
1351	1378.6	-2.00%	41.643	38.4	8.4%
1363.5	1390.7	-1.96%	40.694	40.2	1.1%
680.3	686.5	-0.90%	8.653	8.5	1.8%
916.8	946.5	-3.14%	40.182	41.1	-2.3%
727.8	734.5	-0.91%	13.253	13.3	-0.4%
539.1	547.2	-1.48%	10.621	10.4	2.2%
835.8	878.8	-4.90%	47.211	47.6	-0.8%
545.2	583.6	-6.58%	34.468	39.6	-13.0%
246.8	267.6	-7.78%	3.002	3.7	-18.2%
297.2	322.1	-7.73%	6.467	7.4	-12.6%
921.8	948.7	-2.84%	40.258	39.3	2.4%
706.2	733.1	-3.67%	30.741	30.2	1.7%
248.6	269.1	-7.62%	3.016	3.5	-13.8%
425.3	459.7	-7.48%	18.724	22.2	-15.6%
670.5	732.3	-8.44%	52.682	63.3	-16.8%
416.2	450.7	-7.66%	17.697	20.7	-14.3%
1108.1	1145.4		49.123	50.8	-3.3%
469.3	477.3		20.166	20.0	0.7%
273	275.5		4.788	4.8	

SOCV Accuracy Results – BRCM structures without slew variation considered

Sigma without Slew variation	Spice Sigma	Tempus Sigma without Slew variation
13.811	25.2	-45.15%
34.702	50.9	-31.84%
10.819	18.3	-40.76%
15.313	19.7	-22.44%
32.684	38.4	-14.93%
34.63	40.2	-13.93%
7.051	8.5	-17.05%
25.794	41.1	-37.27%
10.609	13.3	-20.23%
8.637	10.4	-16.87%
31.878	47.6	-32.99%
18.15	39.6	-54.17%
1.717	3.7	-53.22%
3.489	7.4	-52.85%
25.907	39.3	-34.08%
22.002	30.2	-27.24%
1.74	3.5	-50.29%
9.906	22.2	-55.33%
27.794	63.3	-56.09%
9.42	20.7	-54.39%
31.898	50.8	-37.20%
13.321	20.0	-33.48%
3.375	4.8	-29.10%

 Results show considerable degradation to MC reference when slew variation is not considered by Tempus

Application of SOCV

 Better modeling of on chip variation at operating corners

- Utilize SOCV with global corner libraries
 - Minimizes double counting of embedded within-die-variation

Library	Variation Modeling	Accuracy
SS	AOCV	standard
SS	SOCV	better
SSG	SOCV	best

