

TAU Workshop 2014

Increasing the Accuracy of Interconnect Derates: A Path Based Method

Ryan Kinnerk, Dr. Emanuel Popovici, Colm O'Doherty

University College Cork and Analog Devices, Ireland
March 2014

Overview

- Sources of interconnect variation
- Impact of interconnect variation
- Standard interconnect variation margining methodologies
- Proposed interconnect variation margining methodology
- Future work and conclusions

Ampalfiers Prover Handyemen Provessor

Sources of Interconnect Variation

- Lithography
 - Optical Proximity Correction
 - Position in the optical field
 - Lens aberrations
 - Mask imperfections
- Planarization
 - Chemical Mechanical Planarization
- Deposition/Etch
- Environmental factors
 - Misalignment between lithographic steps
 - Different equipment used on adjacent metal layers
 - Temperature & pressure

Impact of Interconnect Variation

- Comparison of interconnect delays in timing environments differentiated only by parasitic corner, in this case Best/Worst
- Note that SI analysis was disabled

Impact of Interconnect Variation

Impact of Interconnect Variation

Amplifiers Fower namingement Processor

Standard Margining Methodologies

- Statistical STA
- Associated problems:
 - Considerable resource requirements
 - Complexity
 - iii. Availability of statistical models
 - iv. Known limitations e.g. error associated with MIN/MAX operations
 - v. Additional licenses

Standard Margining Methodologies

- Using vendor provided timing margin recommendations
- These vary from vendor to vendor but are likely to look similar to the following:

Signoff Timing Corner	BC
Signoff Parasitic Corners	Best
Check Types	Hold
Max Transition	0.5ns
Capture Path OCV	+10%
Extra Margin	100ps

Standard Margining Methodologies

Applying the example timing recommendations

All interconnects on launch/data paths assume Best parasitics All interconnects on capture path assume delay as per Best parasitics offset by +10%

Standard Margining Methodology

- Associated problems:
 - Assumed that using **Best** parasitics on the launch and data paths is conservative
 - Assumed that using **Best** parasitics on the capture path, with the resultant delays offset by 10%, is conservative
 - iii. Impact of interconnect variation on directly connected cells is not considered
 - iv. Susceptibility of individual paths to interconnect variation is not considered
 - Number of paths with little or no slack is not considered

- Consider the ways in which varying interconnect RC affects non-SI path delay:
 - It affects base interconnect delay (D_{NET})
 - ii. It affects propagation delay through the directly connected upstream cell (D_{CELL-UP})
 - It affects delay through directly connected downstream cells (**D**_{CELL-DOWN})

- SI analysis is disabled
- Initially, STA is run as before using vendor recommended timing margins
- The proposed methodology is then applied to paths with little or no slack on each signoff corner

- Assume for illustration purposes that...
 - A single timing corner, e.g. ss_wcv_125, is being used
 - ii. A single fixed set of constraints are being used
 - iii. Two parasitic corners, **Best/Worst**, are being used

Tallets Talletemon. 10 ESSOT

- STA is rerun on each corner with no interconnect derates applied
- Instead of derates, the most pessimistic parasitic corner is used for each interconnect
- Most pessimistic parasitic corner determined using:
- Let...

Alias	Definition	Parasitic Corner
D _{ALL-BEST}	D _{NET} + D _{CELL-UP} + D _{CELL-DOWN}	Best
D _{ALL-WORST}	D _{NET} + D _{CELL-UP} + D _{CELL-DOWN}	Worst

- Assume a hold check on the Best parasitic corner
- All launch and data path interconnects should be modelled as early
- ◆ If D_{ALL-WORST} < D_{ALL-BEST} on any interconnect along either the launch or data paths, the slack is adjusted by (D_{ALL-BEST} D_{ALL-WORST}) in each instance

- Similarly, all capture path interconnects should be modelled as late
- ◆ If D_{ALL-WORST} > D_{ALL-BEST} on any interconnect along the capture path, the slack is adjusted by (D_{ALL-WORST} - D_{ALL-BEST}) in each instance

- ◆ How is D_{NET} measured?
 - Min/max rise/fall D_{NET} is captured on each parasitic corner during initial STA

Houghfiers Power Handyemon Processor

- ◆ How are D_{CELL-UP}/D_{CELL-DOWN} measured?
 - In the previous example, would like to have annotated each individual net with Worst parasitics in turn
 - Not currently supported by STA tools
 - Workaround is to determine the relative change in D_{CELL-UP}/D_{CELL-DOWN} across parasitic corners using lumped RC information captured during initial STA
 - For example:
 - D_{CELL-UP} using lumped **Best** = 300 ps
 - $ightharpoonup D_{CELL-UP}$ using lumped *Worst* = 330 ps
 - D_{CELL-UP} using **Best** = 200 ps
 - > => D_{CELL-UP} using *Worst* assumed to be 220 ps

- A real example of the differences in resultant slack between the proposed methodology and using vendor provided timing margins on 28nm and 40nm CMOS processes
- The 100 most critical hold and setup paths were considered

Future Work

- Include additional designs
- Include additional 65nm CMOS process
- Compare slacks using various methods to slacks from using Monte Carlo SPICE simulations with statistical interconnect models
- Expand methodology to account for the effects of SI
- Account for the susceptibility paths to interconnect variation
- Account for the number of paths with little or no slack

Conclusions

- Standard interconnect variation margining methodologies are complex, or guesses
- The proposed methodology represents a reasonable trade-off between accuracy and complexity
- How path delays are affected by interconnect variation is modelled
- A more accurate and robust analysis with respect to using vendor recommended timing margins

Acknowledgements

- Dr. Emanuel Popovici
- Colm O'Doherty
- Alan Whooley
- Seamus Power

