# ABCD: Booleanizing Continuous Systems for Analog/Mixed-Signal Design, Simulation, and Verification

### Aadithya V. Karthik,

Sayak Ray, Pierluigi Nuzzo, Alan Mishchenko, Robert Brayton, and Jaijeet Roychowdhury

EECS Dept., The University of California, Berkeley

**TAU 2014, Santa Cruz** 

### The Problem: AMS Verification



- Want to verify complete system
  - e.g., eye opening height > 1V?
- Proof or counter-example needed



### Our approach: "Booleanize" the analog parts



Formal verification, high-speed simulation, test pattern generation, ...

... for the full combined system!

### ABCD: Boolean, but Accurate

What is "accurate Booleanization"?



### Prior work: ABCD-L (DAC 2013)



# Introducing ABCD-NL

Non-Linear
Analog Circuit

ABCD-NL
Purely Boolean
Model

#### Rest of this talk

- 1 How ABCD-NL works
- Results: Charge pump, ADC, DAC, etc.
- 3 End user applications

High-speed simulation, formal verification, test pattern generation, etc. for non-linear AMS ckts.

### ABCD-NL Models are FSMs

Non-Linear Analog Circuit



- Finite number of states
- Arcs denoting state transitions
  - Each arc: ip/op pair
- Purely Boolean form



# Key idea: DC, TRAN FSM states



(DC input → DC output)

Starts at DC0 and eventually settles at DC1



- DC FSM states w/ loops
- Multiple such DC states
  - Capture different DCOPs
- DCOPs don't change instantly
- TRAN FSM states
  - Between each pair of DC states
- Purely Boolean Model

### Booleanizing a Charge Pump (1/3)



#### Do SPICE simulations

Discretize Vup, Vdown using 1 bit each, Vout using 5 bits



### Booleanizing a Charge Pump (2/3)



# Analyze SPICE waveforms Build "Analog Transition Table"

```
charge-pump-B
  1002
 2 5953 0 2 531.47 1 2103.6 0
 3 27370 0 2 308.59 3 946.86 4 1585.7 5 2225.2 6 2865.3 7 3506 8 4147.7 9 4790.6 10 5435 11 6081.4 12 6730.2 13 7381.7 14 8036.3 15 8694.6 16 9356.7 17
  4 2.7687e+05 0 2 1296.7 3 6674.3 4 15132 5 26788 6 42588 7 65017 8 1.0136e+05 9 1.9873e+05 10
  1 1.6072e+06 0 0 76170 1 4.2257e+05 2
 2000
2 3 28414 0 0 318.37 1 955.6 2 1593.4 3 2231.6 4 2870.5 5 3510 6 4150 7 4790.8 8 5432.5 9 6075.3 10 6719.8 11 7366.2 12 8014.9 13 8666.5 14 9321.1 15 99
2 4 2.6574e+05 0 0 316.2 1 1511.7 2 4131.5 3 9507.9 4 17962 5 29612 6 45400 7 67805 8 1.0408e+05 9 2.0088e+05 10
   2.9139e+06 0 31 8442.7 30 33342 29 62433 28 94928 27 1.301e+05 26 1.6746e+05 25 2.0677e+05 24 2.4798e+05 23 2.9114e+05 22 3.3637e+05 21 3.8384e+05 3
3 2 20630 0 31 213.69 30 804.46 29 1395.6 28 1987.2 27 2579.1 26 3171.5 25 3764.3 24 4357.5 23 4951.3 22 5545.6 21 6141 20 6738.6 19 7339.1 18 7943.4
3 3 0 0 31
3 4 2.6294e+05 0 31 184.79 30 887.44 29 1730.8 28 2760.5 27 4042.2 26 5669.4 25 7769.9 24 10495 23 13960 22 18162 21 23007 20 28457 19 34579 18 41523 17
4 1 2.3022e+06 0 10 24257 9 1.356e+05 8 2.6091e+05 7 4.0429e+05 6 5.7234e+05 5 7.7767e+05 4 1.0524e+06 3 1.5462e+06 2
4 2 9741.9 0 10 196.27 9 844.33 8 1498.7 7 2160.2 6 2829.7 5 3509.3 4 4204.6 3 4936.9 2 5809.4 1 7381.5 0
  3 23603 0 10 512.85 11 1159.3 12 1808 13 2459.5 14 3114.2 15 3772.4 16 4434.6 17 5101.1 18 5772.6 19 6449.8 20 7133.9 21 7827.5 22 8536 23 9270.7 24 1
  4 0 0 10
                                                                                                                                                    A11
```

► TRAN path DC3 to DC2: up (down) goes 1→0 (0→1)

Total time 20.63ns, o/p starts @ 31, becomes 30 @ 213.6ps, ....

### Booleanizing a Charge Pump (3/3)



Analog Transition Table → Boolean Model

```
charge-pump-s
21
0 24
<ipby> <cstby>
         <onhv>
00010000000000000100
         0000100010000000000000010
         0000100010000000000000110
0100010000000000000101
0100010000000000000110
         0000100010000000000000111
0100010000000000000111
         0000100010000000000001000
```



- i/p: 2-bit encoding
- o/p: 5-bit encoding
  - 32 levels in [0, Vdd]
- FSM state: 19 bits
  - Lots of don't cares (75%)

## ABCD-NL: The 3-Step Algorithm

- 1 Do SPICE simulations
- Analyze SPICE waveforms
  Build "Analog Transition Table"
- 3 Analog Transition Table → Boolean Model

Mar 2014, TAU, Santa Cruz

### Simulating the Boolean Model



# Charge Pump: Long PRBS





# Non-linear analog dynamics accurately captured over long time-frame

~10x Speedup, even in Python

# Circuits Successfully Booleanized



### AMS Verification: The Flow



## Example: Verifying a Signaling System



### Summary

- AMS modelling, verification a challenge: 20% bugs
- Our approach: Booleanize AMS Components
  - ABCD-L: for linear AMS systems
  - ABCD-NL: for non-linear systems
- Applied to A/D and D/A converters, delay lines, charge pumps, equalizers, filters, on-chip power grids, etc.
- Accurate and Scalable
- Applications
  - High-speed simulation
  - Formal verification (in conjunction with ABC)

## Questions