Accurate Prediction of Worst Case Eye Diagrams for Non-Linear Signaling Systems

Aadithya V. Karthik*, Sayak Ray, Robert Brayton, and Jaijeet Roychowdhury

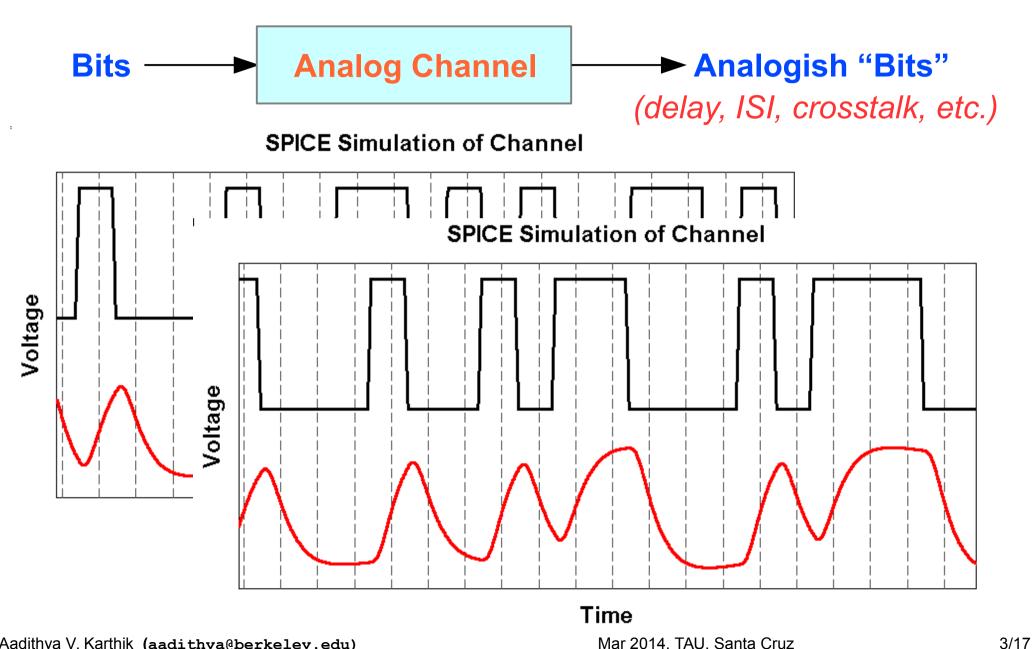
EECS Dept., The University of California, Berkeley

Mar 2014, TAU, Santa Cruz

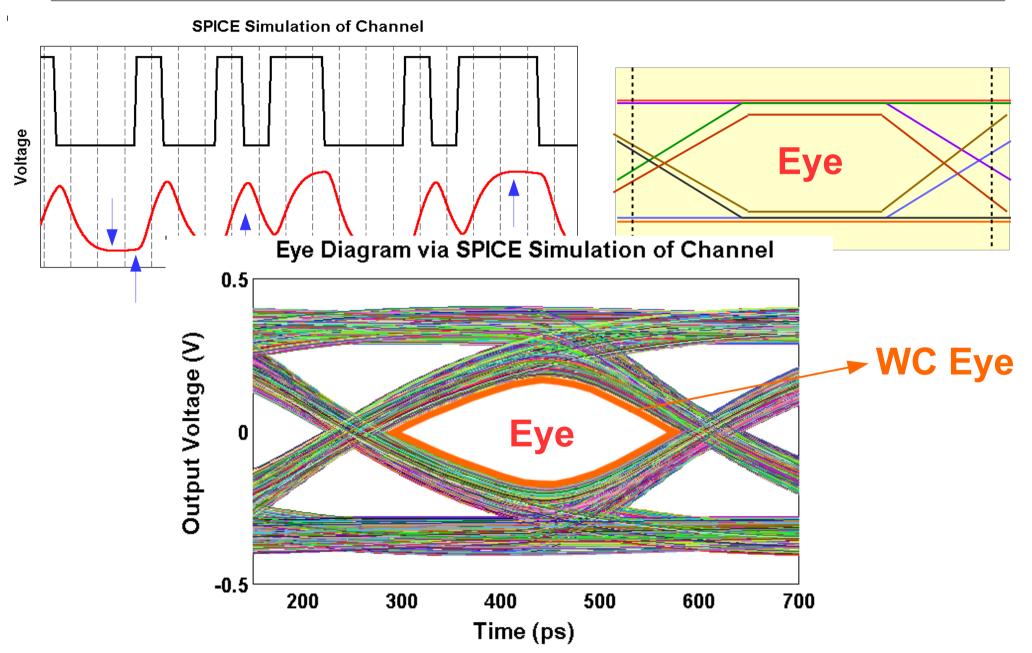
Overview of this talk

- The Worst Case (WC) eye diagram problem
 - Starting from the basics, *i.e.*, what is an eye diagram?
- Existing algorithms for WC eye estimation
 - PDA, illustrated with an example
- Where PDA fails
 - Cannot handle general formulations of problem
- A new algorithm for WC eye computation
 - Illustrated with an example
- Results
 - 8b/10b encoder (PCI Express, USB, etc.)
 - Our technique is much less pessimistic than PDA

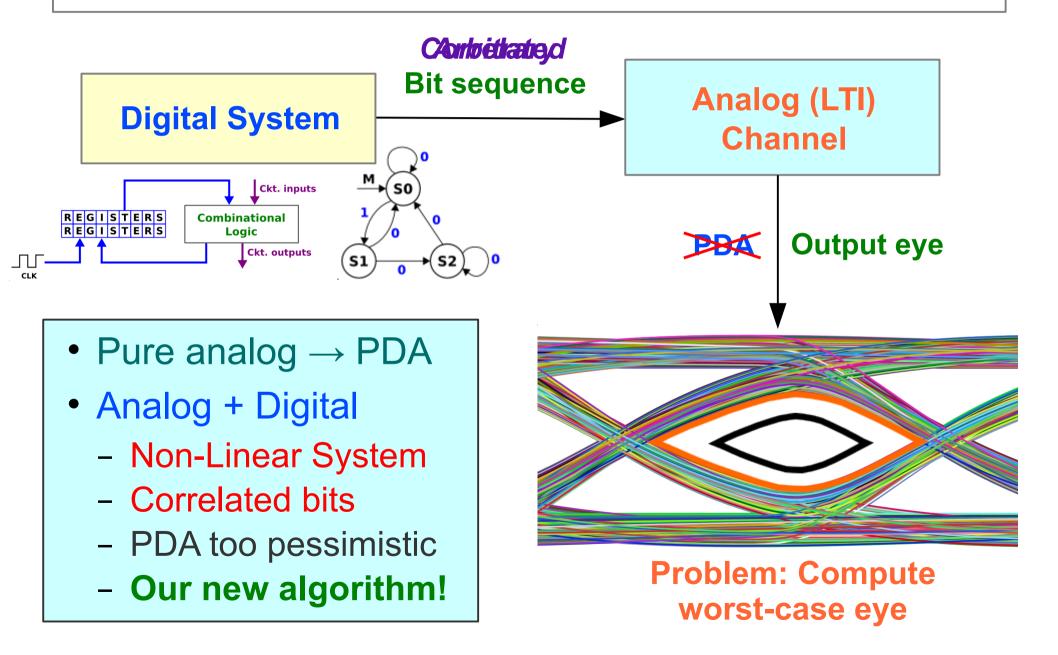
What is an Eye Diagram (1/2)?



What is an Eye Diagram (2/2)?

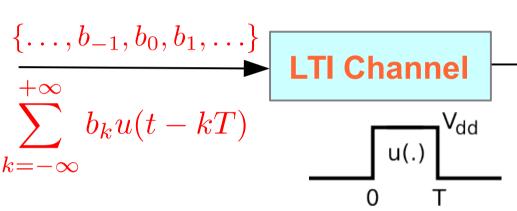


The Worst Case Eye Problem



Peak Distortion Analysis (PDA)

- Assume channel is LTI
- Key idea: WC Eye = 2 Optimization Problems



Linear combination of the bits!

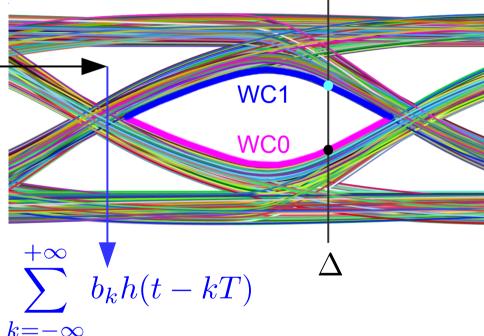
Eg.
$$\frac{1}{5}b_{-3} - \frac{1}{4}b_{-2} + \frac{1}{2}b_{-1} + b_0 - \frac{1}{4}b_1$$

$$b_0 = 1$$

 $b_{-3} = b_{-1} = 0$
 $b_{-2} = b_1 = 1$

 $WC1(\Delta) = 0.5$

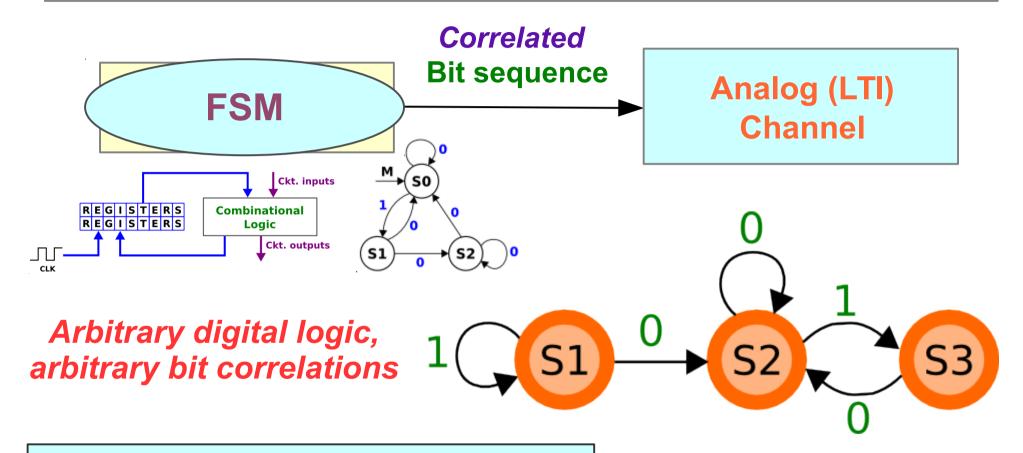
Need mutually [0, 1, 0, 1, 1]



WC1: minimize
$$\sum_{k=-M}^{\lfloor \Delta/T \rfloor} b_k h(\Delta - kT)$$
 (subj. to $b_0 = 1$) $k=-M$

Correlated bits: PDA fails!

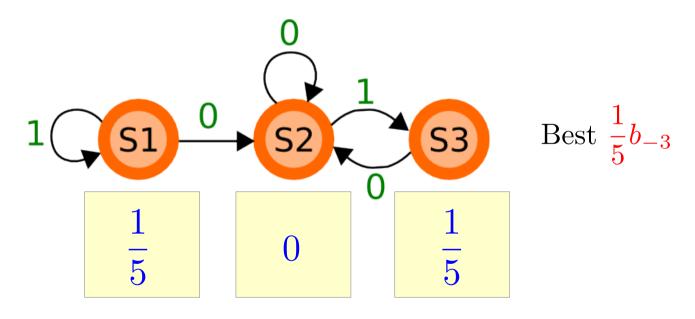
FSMs for Modeling Correlated Bits



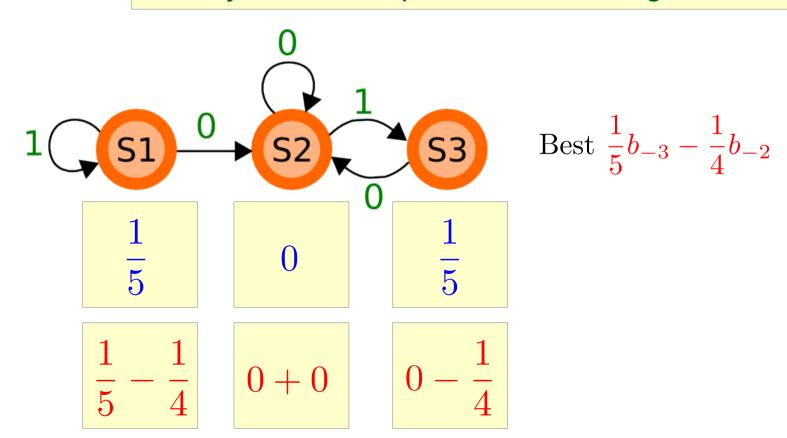
- Finite number of states
- Arcs denoting state transitions
 - Each arc has an output bit

For example, this FSM can never produce the sequence [0, 1, 1]

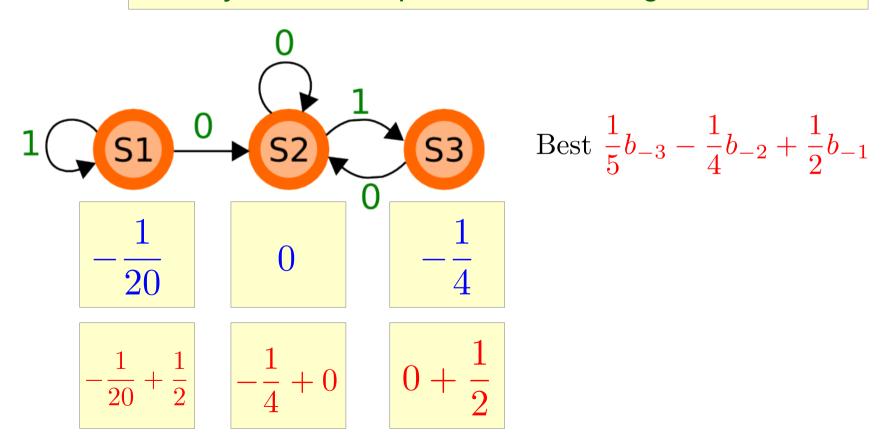
Example. Minimize
$$\frac{1}{5}b_{-3} - \frac{1}{4}b_{-2} + \frac{1}{2}b_{-1} + b_0 - \frac{1}{4}b_1$$
 subj. to $b_0 = 1$, $\{b_k\}$ comes from FSM



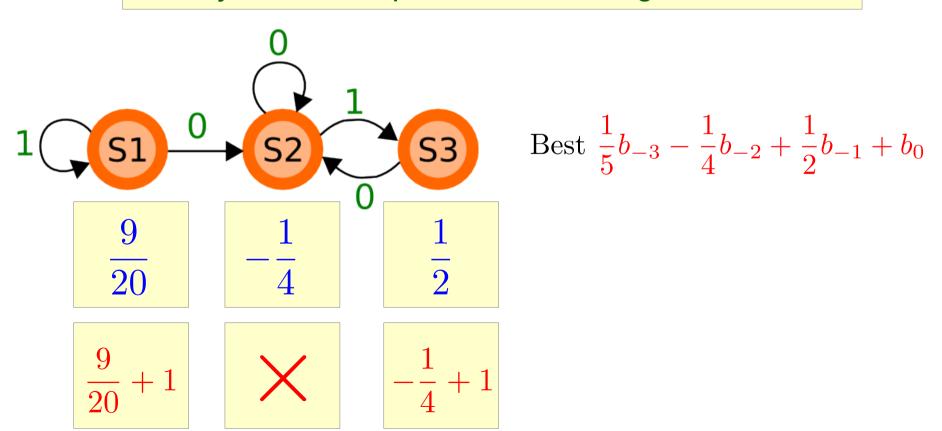
Example. Minimize
$$\frac{1}{5}b_{-3} - \frac{1}{4}b_{-2} + \frac{1}{2}b_{-1} + b_0 - \frac{1}{4}b_1$$
 subj. to $b_0 = 1$, $\{b_k\}$ comes from FSM



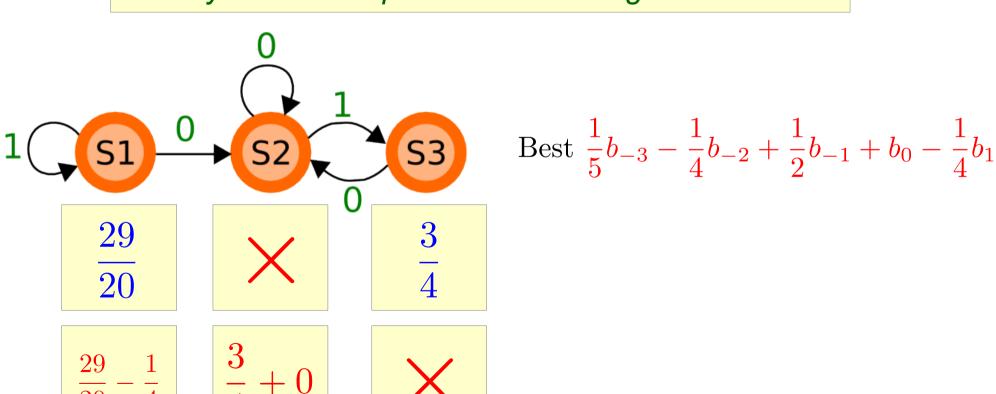
Example. Minimize
$$\frac{1}{5}b_{-3} - \frac{1}{4}b_{-2} + \frac{1}{2}b_{-1} + b_0 - \frac{1}{4}b_1$$
 subj. to $b_0 = 1$, $\{b_k\}$ comes from FSM



Example. Minimize
$$\frac{1}{5}b_{-3} - \frac{1}{4}b_{-2} + \frac{1}{2}b_{-1} + b_0 - \frac{1}{4}b_1$$
 subj. to $b_0 = 1$, $\{b_k\}$ comes from FSM

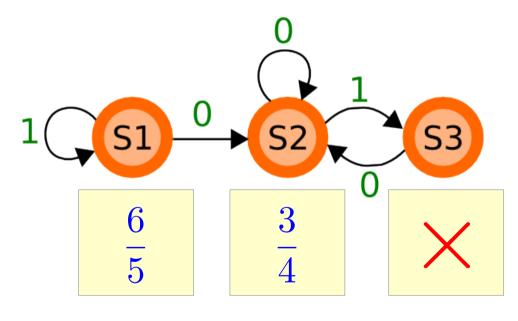


Example. Minimize
$$\frac{1}{5}b_{-3} - \frac{1}{4}b_{-2} + \frac{1}{2}b_{-1} + b_0 - \frac{1}{4}b_1$$
 subj. to $b_0 = 1$, $\{b_k\}$ comes from FSM



Example. Minimize
$$\frac{1}{5}b_{-3} - \frac{1}{4}b_{-2} + \frac{1}{2}b_{-1} + b_0 - \frac{1}{4}b_1$$
 subj. to $b_0 = 1$, $\{b_k\}$ comes from FSM

Key idea: Best partial sum ending in state Si



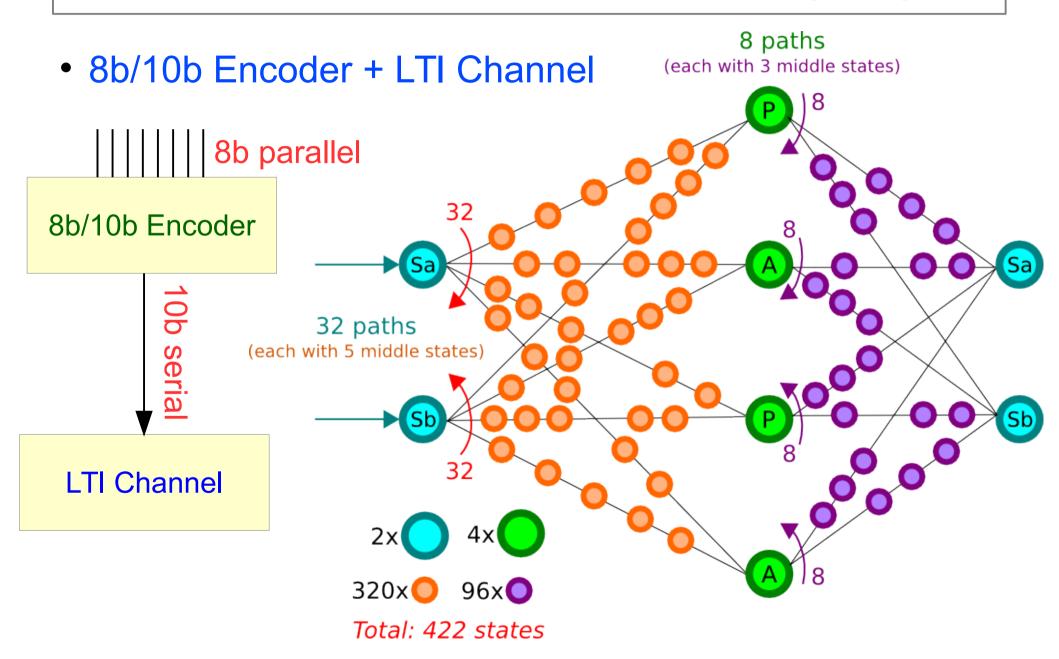
Dynamic programming

Best
$$\frac{1}{5}b_{-3} - \frac{1}{4}b_{-2} + \frac{1}{2}b_{-1} + b_0 - \frac{1}{4}b_1$$

= WC1(\Delta) = $\frac{3}{4}$ = 0.75

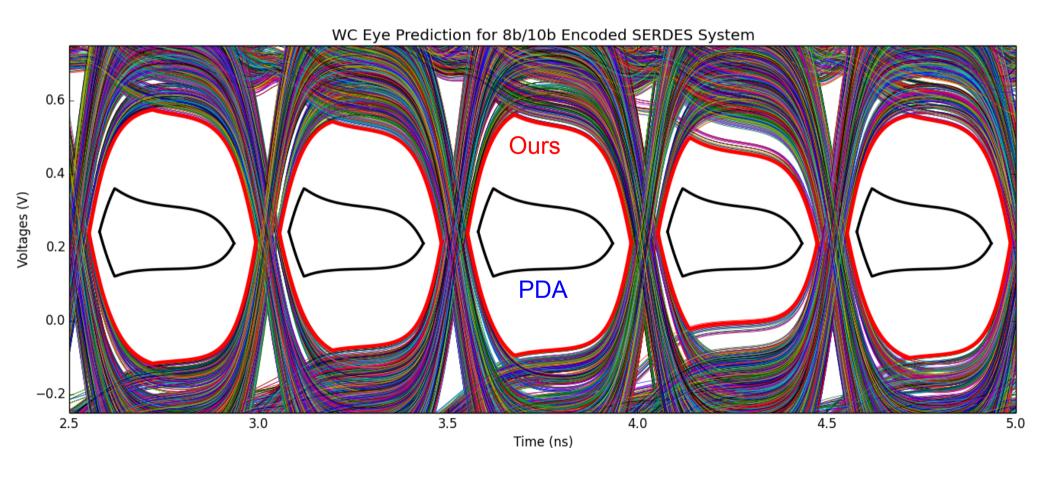
Compare to PDA, which pessimistically predicts 0.5

Results: 8b/10b Encoder (1/2)



Results: 8b/10b Encoder (2/2)

8b/10b Encoder + LTI Channel



Summary

- WC eye computation is important
- Traditional PDA cannot handle bit correlations
- Our new technique can
- Key ideas behind our technique
 - Model bit correlations as FSMs
 - Reduce WC eye computation to an optimization problem
 - Use dynamic programming to solve the above efficiently
- Results
 - (7, 4) Hamming code
 - 8b/10b Encoder
- Future work
 - Deterministic worst case → Probabilistic distributions

Questions