Horseshoes, Hand Grenades, and Timing Signoff: When Getting Close is 'Good Enough'

Arvind NV, Krishna Panda, Anthony Hill Texas Instruments Inc.

March 2014

Outline

Motivation

- Uncertainty in SOC Design
- Leveraging Uncertainty
- Conclusion

MOTIVATION

Design Scaling

CHIP COMPLEXITY

Ref: ISSCC Press Kit 2014

Tapeout Trends

- "Mature" nodes continue to see a lot of tapeout demand.
 - In many cases, there is no benefit to advanced nodes (IO limited, cost-limited)

Ref: http://anysilicon.com/semiconductor-technology-nodes/

Scenario Complexity Circa 2006

	Voltage	Temp	RC	Family	modes				analysis			
Transistor					atpg shift	atpg capt Tclk	atpg capt Fclk	mission	setup	setup +si	hold	hold +si
Fast Ultra-	Ultra-High Test	Room	minc	VBOX								
	Oitra-riigh rest		minr									
Slow Ultra-Low Te	Ultra-Low Test	Room	minc maxc									
Olow	Slow Oitra-Low rest	Burnin										
Slow	High Burnin	Burnin	maxc									
Fast High	High Burnin	Burnin	minc	Burnin								
	r light buittiin		minr									
Slow (EOL)	Vdd - 10%	Cold	maxc	QC - MAX								
Slow (EOL)	_) Vdd - 10% Cold	Cold	nomc									
Slow (EOL)	Vdd - 10%	High	maxc									
			nomc									
			maxr									
Fast	Vdd + 10%	Cold	minc	QC - MIN								
			minr									
Fast	Vdd + 10%	Hold	maxr									
Typical	Vdd	Room	nomc	Typical								
"Near Fast"	Vdd - AVS	High	maxc	AVS								

This has increased significantly with widespread adoption of AVS and DVFS.

AVS & DVFS

Voltage scaling – to reduce power at lower frequencies or to reduce power for fast process corners – has increased the risk of 'outliers' and hence, the need to analyze additional PVT scenarios.

Example: Silicon Prediction

UNCERTAINTY IN SOC DESIGN

Local Mismatch

- Performance of neighboring transistors don't match.
 - Line edge roughness (LER): no edges are perfectly straight.
 - Random dopant fluctuation (RDF): channels have varying dopants.
 - These effects (and others) create <u>local mismatch</u>.
- Local mismatch is generally increasing node-to-node.
 - SPICE models typically account for some (not all) local mismatch.

SPICE Model "Uncertainty"

- "Corner" models are not bounding.
 - Differential delay (race) conditions exist on an SOC.
 - E.g., launch and capture clocks for hold-time checks
- What is in your timing characterization?
 - If pessimistic for small cells, how much faster are large cells?

28nm Local Mismatch (SiON)

Cell Context Variation

- Cell performance depends on its environment.
 - Gate distance to diffusion edges Length of Diffusion (LOD)
 - Gate distance to well edges Well Proximity Effect (WPE)
- □ Idrive can vary by 10-20% (more if not managed properly).

Dynamic IR Drop

- Dynamic IR drop can change significantly across even small distances on an SOC.
 - Different clock domains, logic depth, decoupling cap density.

Dynamic IR

Dynamic IR can speed up or slow down logic gates.

Parasitic Accuracy

- The majority of wire-to-wire coupling involves small capacitances.
- □ At 28nm, >80% of net-to-net coupling is <5ff.
- ☐ The large number of SOC geometries and run time limit our ability to deploy true 3D simulation for capacitance.
- \square The net result is that error on these caps is typically 20-100%.

Inter-Layer Metal Mismatch

- PTV scenarios assume a specific interconnect with matched layers.
 - A corner assumes all layers are at one single condition (e.g., cbest).
 - In reality, each layer is constructed independently and may vary.
 - E.g., M3 may have max etch, M4 may have minimum etch.

Multi-Vt Process Skew

- Devices with different Vt targets are not precisely correlated.
 - Implants tend to be independent.
 - E.g., design may be closed with SVT and HVT both at the fast corner, but hold fallout occurs when HVT runs slightly 'colder'.
- Multiple Vt devices are often mixed on timing paths.
- ☐ This makes it challenging to predict actual path performance.

Aging

- □ Devices age due to gate and drain stress.
 - The net effect can be either speed up or slow down of a path.
- □ Implementing a block characterized with fresh timing models then timing with a library characterized at 100k PoH shows up to a 15% timing degradation.

Clock Aging

- Clock gating is a very common methodology in SOC design.
- □ Gating clocks creates age-based skew in the clock tree.
 - Aged skew can be huge (100ps+ for deeply-gated trees).
- The amount of aging varies based on a history of how often the clocks are gated.

Other Uncertainties

Range	No. of Paths (Old)	No. of Paths (New)
-2% to -1%	0	2
-1% to 0%	0	39
0% to 1%	34	114
1% to 2%	175	370
2% to 3%	180	757
3% to 4%	471	471
4% to 5%	349	54

STA Engine 'Errors'

LEVERAGING UNCERTAINTY

Time-to-Tapeout

- ☐ Understanding the uncertainty in design can be used to improve <u>time-to-tapeout</u>.
- ☐ Fewer ECO Loops
 - e.g., through better implementation-to-signoff correlation
- □ Run-Time
 - e.g., reduced parasitics, simpler timing models
- Memory
 - e.g., reduced parasitics
- Compute
 - e.g., fewer scenarios

Coupling: Small Aggressors

- ☐ Most aggressor-victim pairs have tiny coupling capacitance.
 - (And there is high inaccuracy on these small coupling caps.)
- We can improve the "SI Experience" by intelligent filtering.
 - Filter based on aggressor / victim relationships
 - Grouping small aggressors
 - Ignoring small aggressors

Small Aggressor Modeling

Probability of Timing Escape								
Path Error	Aggressor Bump							
Paul Elloi	0.5%	1%	2%	3%	5%	10%		
0.1%	59%	77%	88%	92%	95%	97%		
0.5%	7%	27%	52%	65%	77%	88%		
1.0%	1%	7%	27%	42%	59%	77%		
2.0%	0%	1%	7%	18%	35%	59%		
3.0%	0%	0%	2%	7%	21%	46%		
5.0%	0%	0%	0%	1%	7%	27%		

Error on a 750ps Clock Cycle

Bump (%Vdd)

- Empirically, the small-aggressor timing impact on a net can be modeled as a log-normal distribution.
- □ We can calculate error vs. accuracy using statistical methods.
 - With appropriate assumptions on gate delay, number of gates, ...
- This provides a framework to trade-off run-time and accuracy vs. design margin and risk.

Small Aggressor Filtering

Filter Threshold	TNS	WNS	Violation Count		
0.005	-13.1	-0.067	1126		
0.01	-2.72	-0.049	323		
0.02	-0.59	-0.047	52		

 Aggressive filtering of small aggressors can pay dividends on reduced timing violations, ECOs, and timeto-tapeout.

Crosstalk on Clock Nets

- Crosstalk on clock increases timing closure effort.
 - Can be a significant source of pessimism.
- Fix outliers and then ignore (disable) crosstalk-induced delay on clock.
- This methodology has successfully been deployed across multiple technology nodes.

Crosstalk Delay (ps)	Number of Nets		
0	9356		
0.5	0		
1	19		
1.5	41		
2	21		
2.5	11		
3	2		
3.5	1		

Sensitivity-Based Signoff

- Multiple scenarios across PTV and RC serve to highlight paths which have sensitivity to process or environment.
- Eliminating sensitive circuits will enable reduction of scenarios which vary only in process, temperature, voltage, or interconnect corner.
- □ These methods may include:
 - limiting wire length (and RC)
 - strict max cap limits
 - smart usage of small drive cells
 - limiting crosstalk (large bumps, noisy slews)
 - crosstalk as a DRV!
 - elimination of SI-induced bumps on clock

Example: Small Cell Handling

- □ Small transistors are highly sensitive to variation.
 - Optimization creates small-cell dominated critical paths.
- We desire to avoid small cells on near-critical timing paths.
 - Datapath depth-based derating → computationally complex.
 - Post-optimization analysis + targeted fixing → time intensive.
 - Derate timing on small cells → practical with minimal impact.

Example: Clock Skew Sensitivity

- □ Skewed circuits often show variation across PTV.
 - Launch and capture edges do not track across all RC or gate delays.
- Targeted margins can eliminate the need to analyze this.
 - Any RC or gate mismatch between launch and capture are covered by a margin.

CONCLUSIONS

"Close is Good Enough"

- STA prediction of silicon performance is generally poor.
 - Unknowns permeate SOC design: characterization, coupling, model accuracy, on-die variation, metal mismatch, etc.
- Understanding these uncertainties can reduce complexity in STA signoff and speed time-to-tapeout.
- Sensitivity-based signoff would significantly reduce signoff scenarios.
 - e.g., DRV checks for wire length, RC, max SI bump/delay, and max noisy slew have been proposed to reduce outliers.