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Design Scaling 
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Ref: ISSCC Press Kit 2014 



Tapeout Trends 

 “Mature” nodes continue to see a lot of tapeout demand. 

 In many cases, there is no benefit to advanced nodes (IO 
limited, cost-limited) 
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Ref: http://anysilicon.com/semiconductor-technology-nodes/ 



Scenario Complexity Circa 2006 

 This has increased significantly with widespread adoption 
of AVS and DVFS. 
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AVS & DVFS  

 Voltage scaling – to reduce power at lower frequencies 
or to reduce power for fast process corners – has 
increased the risk of ‘outliers’ and hence, the need to 
analyze additional PVT scenarios. 
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Example: Silicon Prediction 
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UNCERTAINTY IN SOC 
DESIGN 
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Local Mismatch 

 Performance of neighboring transistors don’t match.  
 Line edge roughness (LER): no edges are perfectly straight. 

 Random dopant fluctuation (RDF): channels have varying dopants. 

 These effects (and others) create local mismatch. 

 Local mismatch is generally increasing node-to-node. 
 SPICE models typically account for some (not all) local mismatch. 

Neighbor Transistors 
(Channel Cross-Section View) 

Vt, Idrive, etc. 

+    
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SPICE Model “Uncertainty” 
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 “Corner” models are not bounding. 

 Differential delay (race) conditions exist on an SOC. 

 E.g., launch and capture clocks for hold-time checks 

 What is in your timing characterization? 

 If pessimistic for small cells, how much faster are large cells? 

f1 

f2 

“Fast” (+3s) 

“Slow” (-3s) 



28nm Local Mismatch (SiON) 
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Cell Context Variation 

 Cell performance depends on its environment. 

 Gate distance to diffusion edges – Length of Diffusion (LOD) 

 Gate distance to well edges –  Well Proximity Effect (WPE) 

 Idrive can vary by 10-20% (more if not managed properly). 
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Dynamic IR Drop 

 Dynamic IR drop can change significantly across even 
small distances on an SOC. 

 Different clock domains, logic depth, decoupling cap density. 

Hill, Panda, Arvind NV 
Texas Instruments 

Leveraging Uncertainty in STA 14 



Dynamic IR 

 Dynamic IR can speed up or slow down logic gates. 

Hill, Panda, Arvind NV 
Texas Instruments 

Leveraging Uncertainty in STA 15 



Parasitic Accuracy 

 The majority of wire-to-wire coupling involves small capacitances. 

 At 28nm, >80% of net-to-net coupling is <5ff. 

 The large number of SOC geometries and run time limit our ability 
to deploy true 3D simulation for capacitance. 

 The net result is that error on these caps is typically 20-100%. 
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Inter-Layer Metal Mismatch 

 PTV scenarios assume a specific interconnect with matched layers. 

 A corner assumes all layers are at one single condition (e.g., cbest). 

 In reality, each layer is constructed independently and may vary. 

 E.g., M3 may have max etch, M4 may have minimum etch. 

Hill, Panda, Arvind NV 
Texas Instruments 

Leveraging Uncertainty in STA 17 



 Devices with different Vt targets are not precisely correlated. 

 Implants tend to be independent. 

 E.g., design may be closed with SVT and HVT both at the fast corner, 
but hold fallout occurs when HVT runs slightly ‘colder’. 

 Multiple Vt devices are often mixed on timing paths. 

 This makes it challenging to predict actual path performance. 

Multi-Vt Process Skew 

SVT 

HVT 
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Aging 

 Devices age due to gate and drain stress. 

 The net effect can be either speed up or slow down of a path. 

 Implementing a block characterized with fresh timing models then 
timing with a library characterized at 100k PoH shows up to a 15% 
timing degradation. 
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Clock Aging 

 Clock gating is a very common methodology in SOC design. 

 Gating clocks creates age-based skew in the clock tree. 

 Aged skew can be huge – (100ps+ for deeply-gated trees). 

 The amount of aging varies based on a history of how often the 
clocks are gated. 
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Other Uncertainties 
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LEVERAGING UNCERTAINTY 
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Time-to-Tapeout 

 Understanding the uncertainty in design can be used to 
improve time-to-tapeout. 

 

 Fewer ECO Loops 

 e.g., through better implementation-to-signoff correlation 

 Run-Time 

 e.g., reduced parasitics, simpler timing models 

 Memory 

 e.g., reduced parasitics 

 Compute 

 e.g., fewer scenarios  
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Coupling: Small Aggressors 

 Most aggressor-victim pairs have tiny coupling capacitance. 

 (And there is high inaccuracy on these small coupling caps.) 

 We can improve the “SI Experience” by intelligent filtering. 

 Filter based on aggressor / victim relationships 

 Grouping small aggressors  

 Ignoring small aggressors 
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Small Aggressor Modeling 

 Empirically, the small-aggressor timing impact on a net can be 
modeled as a log-normal distribution. 

 We can calculate error vs. accuracy using statistical methods. 
 With appropriate assumptions on gate delay, number of gates, … 

 This provides a framework to trade-off run-time and accuracy 
vs. design margin and risk. 

Error on a 750ps Clock Cycle 
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Small Aggressor Filtering 

 Aggressive filtering of small aggressors can pay 
dividends on reduced timing violations, ECOs, and time-
to-tapeout. 
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Filter 

Threshold
TNS WNS

Violation 

Count

0.005 -13.1 -0.067 1126

0.01 -2.72 -0.049 323

0.02 -0.59 -0.047 52



Crosstalk on Clock Nets 

 Crosstalk on clock increases 
timing closure effort. 

 Can be a significant source 
of pessimism. 

 Fix outliers and then ignore 
(disable) crosstalk-induced 
delay on clock. 

 This methodology has 
successfully been deployed 
across multiple technology 
nodes. 
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Crosstalk

Delay (ps)

Number of 

Nets

0 9356

0.5 0

1 19

1.5 41

2 21

2.5 11

3 2

3.5 1



Sensitivity-Based Signoff 

 Multiple scenarios across PTV and RC serve to highlight 
paths which have sensitivity to process or environment. 

 

 Eliminating sensitive circuits will enable reduction of 
scenarios which vary only in process, temperature, 
voltage, or interconnect corner. 

 

 These methods may include: 

 limiting wire length (and RC) 

 strict max cap limits 

 smart usage of small drive cells 

 limiting crosstalk (large bumps, noisy slews) 

  crosstalk as a DRV! 

 elimination of SI-induced bumps on clock 
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Example: Small Cell Handling 

 Small transistors are highly sensitive to variation. 

 Optimization creates small-cell dominated critical paths. 

 We desire to avoid small cells on near-critical timing paths. 

 Datapath depth-based derating  computationally complex. 

 Post-optimization analysis + targeted fixing  time intensive. 

 Derate timing on small cells  practical with minimal impact. 

Deep “Real” 
Critical Path 

Area Optimized 
Shallow Path 
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Example: Clock Skew Sensitivity  

 Skewed circuits often show variation across PTV. 

 Launch and capture edges do not track across all RC or gate 
delays. 

 Targeted margins can eliminate the need to analyze this. 

 Any RC or gate mismatch between launch and capture are 
covered by a margin. 
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CONCLUSIONS 
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“Close is Good Enough” 

 STA prediction of silicon performance is generally poor. 

 Unknowns permeate SOC design: characterization, 
coupling, model accuracy, on-die variation, metal 
mismatch, etc. 

 

 Understanding these uncertainties can reduce complexity 
in STA signoff and speed time-to-tapeout. 

 

 Sensitivity-based signoff would significantly reduce 
signoff scenarios. 

 e.g., DRV checks for wire length, RC, max SI bump/delay, 
and max noisy slew have been proposed to reduce outliers. 
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