Trace-based timing fault localization with supply voltage sensor

Miho Ueno, Masanori Hashimoto, Takao Onoye Osaka University

{ueno.miho, hasimoto, onoye}@ist.osaka-u.ac.jp

- 1. Background and objectives
- 2. Proposed timing fault localization system
- 3. Supply voltage sensor
- 4. Evaluation of fault localization performance
- 5. Conclusion

- 1. Background and objectives
- 2. Proposed timing fault localization system
- 3. Supply voltage sensor
- 4. Evaluation of fault localization performance
- 5. Conclusion

Background

Electrical timing fault

- is a bug that arises even though the circuit is logically correct and is caused by dynamic events
- arises only a certain situation and its reproduction is difficult
- ⇒It is hard to debug the electrical timing fault.

Trace-based fault localization system

Trace buffer[1] records circuit signals and status at every cycle.

× Trace buffer involves additional area overhead.

A trigger signal -> crucially important

- is generated after a fault occurs.
- prevents to overwrite the fault information.

Information recorded in the trace buffer

[1] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and D. Miller, "A reconfigurable design-for-debug infrastructure for SoCs," *DAC*, pp. 7–12, 2006.

Trigger quality

- 1. Latency
- Time interval between timing fault and trigger.
- Shorter latency is desirable.
- 2. # of trace analyses
- # of traces to check if a timing faults is included until a trace captures the target timing fault.
- Smaller number is desirable.

Objective

- Trigger quality is very important
 - for area overhead.
 - for fault localization efficiency.
- Conventionally logical events are used as triggers (e.g. deadlock and segmentation fault [2]).
 - ×Electrical timing faults can be recorded only when the fault influence appears as a logical event.
 - ×It takes a long time for appearance.

Objective

Directly observe power supply noise and improve trigger quality.

- 1. Background and objectives
- 2. Proposed timing fault localization system
- 3. Supply voltage sensor
- 4. Evaluation of fault localization performance
- 5. Conclusion

Proposed timing fault localization system

 Proposed system consists of trace buffer, trigger generator and supply voltage sensor.

Trace buffer

- Trace buffer aims to store the information which is useful for localizing electrical timing faults.
- Both width and depth of the trace buffer must be minimized for area overhead reduction.
- ⇔Fault localization efficiency, i.e. # of trace analyses is maintained.

Supply voltage sensor

Provides supply voltage information to trigger generator and trace buffer.

- Sensor should measure cycle-by-cycle supply voltage fluctuation, since a timing fault occurs depending on supply voltage within the corresponding cycle.
- To immediately exploit sensing results for trigger generation, real-time sensing is demanded.

- 1. Background and objectives
- 2. Proposed timing fault localization system
- 3. Supply voltage sensor
- 4. Evaluation of fault localization performance
- 5. Conclusion

Sensor structure and operation

Supply voltage sensor consists of a delay chain and TDC (Time to Digital Converter).

Latch the signal at E43

- Distance of $E\downarrow 1$ propagation (N_{passed}) represents Vdd.
- Every cycle and one-shot sensing is achieved.

Sensor structure and operation

Supply voltage sensor consists of a delay chain and TDC (Time to Digital Converter).

Latch the signal at E13

- Distance of $E\downarrow 1$ propagation (N_{passed}) represents Vdd.
- Every cycle and one-shot sensing is achieved.

Measured voltage resolution

Supply voltage sensor w/ 256-stage TDC

- is implemented on a 65-nm process test chip.
- occupies 0.138% of the test chip.

Test chip

 $(4.2 \text{mm} \times 2.1 \text{mm})$

Voltage resolution of 3.9mV

[3] Miho Ueno, Masanori Hashimoto, and Takao Onoye, "Real-Time Supply Voltage Sensor for Detecting/Debugging Electrical Timing Failures," in *Proc. of IEEE IPDPSW*, pp. 301-305, 2013

- 1. Background and objectives
- 2. Proposed timing fault localization system
- 3. Supply voltage sensor
- 4. Evaluation of fault localization performance
- 5. Conclusion

Evaluation environment

- To reproduce noise-induced timing faults, a gatelevel logic simulation framework that considers dynamic supply noise is developed.
- We used
 - TOSHIBA MeP processor as a CUT.
 - three MiBench programs (SHA1, CRC32, dijkstra).

An example of simulation result

An electrical timing fault occurred when the voltage dropped to a low value of 0.823V.

Setup for trigger quality evaluation

Trigger setting

- Threshold value of supply voltage.
 - (Any, ≤ 0.96 , ≤ 0.92 , ≤ 0.88 , ≤ 0.84 , ≤ 0.80)

AND

- Instruction executing in the CUT.
 - Instructions supposed to activate timing-critical paths were selected.
 - For example, for instructions (ret, lw, sw, jmp) were selected from dijkstra program.

Comparison to trigger based on logical event

Memory access error, Exception handling etc.

Reminder: Metrics of trigger quality

- 1. Latency
- Time interval between timing fault and trigger.
- Shorter latency is desirable.
- 2. # of trace analyses
- # of traces to check if a timing faults is included until a trace captures the target timing fault.
- Smaller number is desirable.

Trigger quality improvement (dijkstra)

Voltage	Instruction Condition							
Condi- tion	ret		lw		SW		Jmp	
	# of trace analyses	Latency	# of trace analyses	Latency	# of trace analyses	Latency	# of trace analyses	Latency
Any	461	26	10,439	52	4,502	2	318	140
≤0.96	354	26	8,886	52	3,754	2	262	140
≤0.92	237	1/13	6,075	1/45	2,583	2 1/25 (179	1/21
≤0.88	121	26	2,386	52	1,196	1/2	95	140
≤0.84	36	26	232	52	183	2	15	140
≤0.80	0	N/A	0	N/A	0	1,977	0	N/A
# of trace analyses can be significantly reduced								

of trace analyses can be significantly reduced thanks to voltage sensor.

Comparison to logical event trigger

Logical events were observed in all three programs.

- Trigger activation w/ logical events was not useful.
 - Fault localization must be carried out without any clues.

For example, supposing buffer depth is 16,

- # of trace analyses is 3671.
- w/ a trigger setting of "sw" and "≤0.84", it becomes 183.

of trace analyses is reduced to 1/20.

Trigger sweep policy

Repeating trace analyses w/ different trigger settings, we have two policies in sweeping priority.

- A) Fix instruction and change voltage threshold first.
- B) Fix voltage threshold and change instruction first.

Trigger condition priority (dijkstra program)

- Voltage threshold
 - $0.80V \rightarrow 0.84V \rightarrow 0.88V \rightarrow 0.92V \rightarrow 0.96V \rightarrow Any$
- Instruction
 - ret \rightarrow lw \rightarrow sw \rightarrow jmp
 - This order is decided by the frequency of timing violation in the program.

Compare # of trace analyses with policy A) and B).

Evaluation result of trigger sweep policy

- I. Trace buffer depth is 100.
- Policy A): # of trace analyses is 38. comparable
- Policy B): # of trace analyses is 41. ∠
- **II.** Trace buffer depth is 2.
- Policy A): # of trace analyses is 56,879.
- Policy B): # of trace analyses is 2,090. ← superior

In this case, we should change **instruction condition** first before raising voltage threshold.

- 1. Background and objectives
- 2. Proposed timing fault localization system
- 3. Supply voltage sensor
- 4. Evaluation of fault localization performance
- 5. Conclusion

Conclusion

We proposed a timing fault localization system with a supply voltage sensor.

- Supply voltage sensor
 - could provide cycle-accurate voltage variation.
 - had 4mV voltage resolution on a 65-nm test chip.
- Proposed system w/ a voltage sensor
 - was helpful for reducing trace buffer depth.
 - reduced # of trace analyses and improved efficiency of timing fault localization.
- Future work includes evaluation of more complex trigger condition with a number of test programs.