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Problem: Time-Consuming Debugging

 Debugging tasks are major bottlenecks in IC design
 Mostly depends on trial-and-errors

 Takes a significant amount of time!
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http://www.eeweb.com/rtz/trial-error
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Goal: Automatic Bug Localization

 Goal is to develop a tool that can automatically localize bugs 

from available waveforms and models, primarily for post-

silicon validation

Closed eye, Failure!

Which block caused 

this failure ?
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Proposed Approach: Bug Diagnosis Using 

Probabilistic Graphical Models

1. Construct probabilistic graphical model

2. Make an observation

3. Estimate the posterior probability of a 

system’s parameter θ

4. If Ppost(θ in θspec_range) < threshold, θ

and its associated sub-block are 

reported as failure root-causes
 If multiple bug root-causes are found, rank them 

according to P(θ=θref|Dob)
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Advantages of Our Approach

 Uncertainty/noise can be 

modeled

 Non-linearity can be modeled

 Efficient inference algorithms 

exist

6

too low!

IN AA BB OUT

θ1θ1 θ2θ2 θ3θ3



Outline

 Overview

 Bug localization using graphical models

 Graphical model creation

 Gaussian Bayesian network

 Table-based Bayesian network

 Bug localization by statistical inference

 Experimental results

 Conclusion

7



Probabilistic Models

 A system’s behavior can be described by probability

instead of a functional relationship
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P( IN, B, C, OUT, θ1, θ2 ,θ3 )

This is difficult to characterize!
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Probabilistic Graphical Model

 We can significantly reduce the 

complexity by graphical model

 Can decompose a full joint distribution into 

small factors
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Two Parametric Model of Factors in 

Graphical Model

 Conditional Probability Density (CPD) 
 A template to describe CPD, P(Zout|Xin,Yin) 

1. Gaussian Bayesian network (GBN)

 P(Z | X, Y) ~ Normal (aX+bY, ϭ2)

 For linear block

2. Table-based Bayesian network (TBN)

 P(Z | X, Y) ~ Multinomial (p1,p2,…,pk)

 For nonlinear block
Gaussian BN

Multinomial BN

P(Z|X,Y) 
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Gaussian Bayesian Network (GBN) Model 

Example – Continuous Time Linear Equalizer

 CTLE example

P(yn|xn,xn-1,yn-1,yn-2) 
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Table-Based Bayesian Network (TBN)

Model Creation – Decision Feedback Equalizer

 DFE example

P(y[n]|x[n]=6,z[n-1]=-1,z[n-2]=-1)

P(y[n]|x[n]=5,z[n-1]=1,z[n-2]=-1)

P(y[n]|x[n]=3,z[n-1]=-1,z[n-2]=-1)

x[n]=input

y[n]=slicer’s input

z[n]=output
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Bug Localization by Statistical Inference: 

Computing Pposterior (θ | Dob)

 We want to estimate the probability of a 

parameter (θ) after observation (Dob) by 

statistical inference

 Possible Approaches

 Exact inference

 Junction tree algorithm

 Approximate inference

 Gibbs sampling
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How do we get Pposterior(θ | Dob) ?

Ppost(θ2|Dob)

θ2θ 2,ref



Statistical Inference by Gibbs Sampling:

Computing Pposterior (θ | Dob)

 Gibbs Sampling can be used when the conditional 

distribution of each variable is known and is easy to 

sample from

1. Start with an initial guess X0=(B1,0, B2,0, …, θ3,0)

2. Take a sample B1,1  from P(B1| B2,0, B3,0, …, θ3,0) and 

update B1

3. Take samples for B2 to B3 and update them

4. Take a sample θ1,1  from P(θ1| B1,0, …, θ2,0, θ3,0) and 

update θ1

5. Take samples for C1 to C3 and update them

6. Take samples θ2 to θ3 and update them

7. Iterate 2~6 step N times

8. Estimate Ppost(θ | Dob) ~ Histogram(Samples)

 P(θ1 | Dob) ~ Histogram(θ1,k+1, θ1,k+2, …θ1,k+N) 
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Increasing Accuracy by Using 

Controllability

 The method may miss a bug root-cause due to highly 

limited observability

 However, we can increase accuracy and differentiate bug 

root-causes by using controllability
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Test Case – A 5 Gbps I/O Link

 System Parameters (θ)
 TX FFE, Channel, RX CTLE : pole / zero

 DFE: tap coefficients / slicer threshold
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FR408 GBX Reference Backplane

Continuous Time Linear Equalizer

S-parameter channel model is from http://www.t11.org/ftp/t11/models/index.html
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Experiment (1) –

The Posteriors Cover True Parameters As Expected

 Posterior distributions of FFE, channel and CTLE parameters and true 

parameter locations
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Zero map of TX FFE Pole/Zero map of channel Pole/Zero map of CTLE

True pole/zero location (x / o)

Estimated posterior distribution of pole/zero (x / o)
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Experiment (2) – The Problematic Buggy 

Channel Can be Identified
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 In this experiment, a channel is replaced by a problematic 

lossy channel

Frequency response of lossy channelFrequency response of desired channel
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The Bug Localization and Ranking 

Procedure
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Ranking
• Rank them according to P(θ in θspec|Dob)

• P(θ2 in θ2,spec|Dob) < P(θ1 in θ1,spec|Dob) < … 

• Rank in order of θ2, θ1, …
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Experiment (2) – A Buggy Lossy Channel is 

Identified As the Bug Root-Cause

Estimated parameter posterior 

of buggy channel

real(z)

real(p1)

Desired Parameter Value (Narrow bar)

Desired pole(x)/zero(o) locations

Estimated posterior distribution of pole/zero (x / o)
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Conclusion

Under limited observability, the proposed bug 

method can automatically localize bugs

 Nonlinearity and uncertainty could be well reflected

 Can leverage controllability

 Can rank multiple bug root-causes
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Bug Diagnosis: Does Posterior 

cover a desired spec-range?
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