Probabilistic Bug Localization for Analog/Mixed-Signal Circuits using Probabilistic Graphical Models

Sangho Youn¹ and Chenjie Gu²

¹Seoul National University, South Korea

²Intel Strategic CAD Labs, Hillsboro, OR, USA

March 2014

Outline

- Overview
- Bug localization using graphical models
 - Graphical model creation
 - Gaussian Bayesian network
 - Table-based Bayesian network
 - Bug localization by statistical inference
- Experimental results
- Conclusion

Problem: Time-Consuming Debugging

- Debugging tasks are major bottlenecks in IC design
 - Mostly depends on trial-and-errors
 - Takes a significant amount of time!

Return to Zero

EEWeb.com

Goal: Automatic Bug Localization

 Goal is to develop a tool that can automatically localize bugs from available waveforms and models, primarily for postsilicon validation

Proposed Approach: Bug Diagnosis Using Probabilistic Graphical Models

- Construct probabilistic graphical model
- Make an observation
- 3. Estimate the posterior probability of a system's parameter θ
- 4. If $P_{post}(\theta \text{ in } \theta_{spec_range}) < threshold$, θ and its associated sub-block are reported as failure root-causes
 - If multiple bug root-causes are found, rank them according to $P(\theta=\theta_{ref}|D_{ob})$

Advantages of Our Approach

- Uncertainty/noise can be modeled
- Non-linearity can be modeled
- Efficient inference algorithms exist

Outline

- Overview
- Bug localization using graphical models
 - Graphical model creation
 - Gaussian Bayesian network
 - Table-based Bayesian network
 - Bug localization by statistical inference
- Experimental results
- Conclusion

Probabilistic Models

 A system's behavior can be described by probability instead of a functional relationship

$$P(IN, B, C, OUT, \theta_1, \theta_2, \theta_3)$$

This is difficult to characterize!

Probabilistic Graphical Model

 We can significantly reduce the complexity by graphical model

 Can decompose a full joint distribution into small factors

Two Parametric Model of Factors in Graphical Model

- Conditional Probability Density (CPD)
 - A template to describe CPD, P(Z_{out}|X_{in}, Y_{in})
- Gaussian Bayesian network (GBN)
 - $P(Z \mid X, Y) \sim Normal(aX+bY, 6^2)$
 - For *linear* block
- Table-based Bayesian network (TBN)
 - $P(Z \mid X, Y) \sim Multinomial(p_1, p_2, ..., p_k)$
 - For *nonlinear* block

Gaussian Bayesian Network (GBN) Model Example – Continuous Time Linear Equalizer

CTLE example

Discrete-time

$$H(z) = K \frac{b_0 + b_1 z^{-1}}{1 + a_1 + a_2 z^{-1}}$$

$$y_n = b_0 x_n + b_1 x_{n-1} + a_1 y_{n-1} + a_2 y_{n-2}$$

$$H(s) = \frac{g_m}{C_p} \frac{(s + \frac{1}{R_s C_s})}{(s + \frac{1 + \frac{g_m R_s}{2}}{R_s C_s})(s + \frac{1}{R_D C_p})}$$

Table-Based Bayesian Network (TBN) Model Creation – Decision Feedback Equalizer

DFE example

Outline

- Overview
- Bug localization using graphical models
 - Graphical model creation
 - Gaussian Bayesian network
 - Table-based Bayesian network
 - Bug localization by statistical inference
- Experimental results
- Conclusion

Bug Localization by Statistical Inference: Computing $P_{posterior}$ ($\theta \mid D_{ob}$)

- We want to estimate the probability of a parameter (θ) after observation (D_{ob}) by statistical inference
- Possible Approaches
 - Exact inference
 - Junction tree algorithm
 - Approximate inference
 - Gibbs sampling

How do we get $P_{posterior}(\theta \mid D_{ob})$?

Statistical Inference by Gibbs Sampling: Computing $P_{posterior}$ ($\theta \mid D_{ob}$)

 Gibbs Sampling can be used when the conditional distribution of each variable is known and is easy to sample from

- 1. Start with an initial guess $X_0 = (B_{1,0}, B_{2,0}, ..., \theta_{3,0})$
- 2. Take a sample $B_{1,1}$ from $P(B_1|B_{2,0},B_{3,0},...,\theta_{3,0})$ and update B_1
- 3. Take samples for B_2 to B_3 and update them
- 4. Take a sample $\theta_{1,1}$ from $P(\theta_1 | B_{1,0}, ..., \theta_{2,0}, \theta_{3,0})$ and update θ_1
- 5. Take samples for C₁ to C₃ and update them
- 6. Take samples θ_2 to θ_3 and update them
- 7. Iterate 2~6 step N times
- 8. Estimate $P_{post}(\theta \mid D_{ob}) \sim Histogram(Samples)$
 - $P(\theta_1 \mid D_{ob}) \sim Histogram(\theta_{1,k+1}, \theta_{1,k+2}, ...\theta_{1,k+N})$

$$(B_{1,1}, B_{2,1}, ..., C_{1,1}, C_{2,1}, ..., \theta_{3,1})$$

 $(B_{1,2}, B_{2,2}, ..., C_{1,2}, C_{2,2}, ..., \theta_{3,2})$

$$(B_{1,N}, B_{2,N}, ..., C_{1,N}, C_{2,N}, ..., \theta_{3,N})$$

Increasing Accuracy by Using Controllability

- The method may miss a bug root-cause due to highly limited observability
- However, we can increase accuracy and differentiate bug root-causes by using controllability

Outline

- Overview
- Bug localization using graphical models
 - Graphical model creation
 - Gaussian Bayesian network
 - Table-based Bayesian network
 - Bug localization by statistical inference
- Experimental results
- Conclusion

Test Case – A 5 Gbps I/O Link

- System Parameters (θ)
 - TX FFE, Channel, RX CTLE : pole / zero
 - DFE: tap coefficients / slicer threshold

Continuous Time Linear Equalizer

Experiment (1) – The Posteriors Cover True Parameters As Expected

 Posterior distributions of FFE, channel and CTLE parameters and true parameter locations

True pole/zero location (x / o)
Estimated posterior distribution of pole/zero (x / o)

Experiment (2) – The Problematic Buggy Channel Can be Identified

 In this experiment, a channel is replaced by a problematic lossy channel

Frequency response of **desired** channel

Frequency response of lossy channel

The Bug Localization and Ranking Procedure

Ranking

- Rank them according to $P(\theta \text{ in } \theta_{spec}|D_{ob})$
- $P(\theta_2 \text{ in } \theta_{2,\text{spec}}|D_{ob}) < P(\theta_1 \text{ in } \theta_{1,\text{spec}}|D_{ob}) < \dots$
- Rank in order of θ_2 , θ_1 , ...

Experiment (2) – A Buggy Lossy Channel is Identified As the Bug Root-Cause

$P_{post}(\theta in \theta_{spec})$		Real(z1)	Imag(z1)	Real(p1)	Imag(p1)	Real(p2)	Imag(p2)
Channe	1	0.17%	100%	1.7%	5.4%	15%	5.4%
CTLE	\	65%	100%	58%	90%	63%	90%

Desired pole(x)/zero(o) locations

Estimated posterior distribution of pole/zero (x / o)

Estimated parameter posterior of buggy channel

Desired Parameter Value (Narrow bar)

Conclusion

- Under limited observability, the proposed bug method can automatically localize bugs
 - Nonlinearity and uncertainty could be well reflected
 - Can leverage controllability
 - Can rank multiple bug root-causes

