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Problem: Time-Consuming Debugging

= Debugging tasks are major bottlenecks in IC design
= Mostly depends on trial-and-errors
= Takes a significant amount of time!
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Goal: Automatic Bug Localization

= Goal Is to develop a tool that can automatically localize bugs
from available waveforms and models, primarily for post-
silicon validation
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Proposed Approach: Bug Diagnosis Using
Probabilistic Graphical Models

1. Construct probabilistic graphical model
2. Make an observation

3. Estimate the posterior probability of a
system’s parameter 0

4. 1 Ppost(0 1N O5pec 1ange) < threshold, 6
and its associated sub-block are

reported as failure root-causes

= If multiple bug root-causes are found, rank them
according to P(6=6,,D,,)
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Advantages of Our Approach

= Uncertainty/noise can be
modeled

= Non-linearity can be modeled

= Efficient inference algorithms
exist
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B
Probabilistic Models

= A system’s behavior can be described by probability
Instead of a functional relationship
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. °
Probabilistic Graphical Model

= We can significantly reduce the
complexity by graphical model

= Can decompose a full joint distribution into
small factors
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Two Parametric Model of Factors In
Graphical Model

= Conditional Probability Density (CPD)
= Atemplate to describe CPD, P(Z, X, Yin)

1. Gaussian Bayesian network (GBN)
= P(Z | X, Y) ~Normal (aX+bY, &%)
= For linear block

2. Table-based Bayesian network (TBN)
= P(Z | X, Y) ~ Multinomial (p;,ps,---,Py)
= For nonlinear block
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Gaussian Bayesian Network (GBN) Model
Example — Continuous Time Linear Equalizer

= CTLE example
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Table-Based Bayesian Network (TBN)
Model Creation — Decision Feedback Equalizer

= DFE example
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x[n]:input _ P(y[n]|x[n]=5,z[n-1]=1,z[n-2]=-1)
y[n]=slicer’s input P(y[n]|x[n]=6,z[n-1]=-1,z[n-2]=-1)
z[n]=output P(y[n]|X[n]=3,2[n-1]=-1,2[n-2]=-1)
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Bug Localization by Statistical Inference:
Computing I:)posterior (9 ‘ Dob)

= We want to estimate the probability of a
parameter (6) after observation (D_,) by
statistical inference

= Possible Approaches
= Exact inference
= Junction tree algorithm
= Approximate inference
= Gibbs sampling

How do we get I:)posterior(e | Dob) ?
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Statistical Inference by Gibbs Sampling:
Computing I:)posterior (6 ‘ Dob)

= Gibbs Sampling can be used when the conditional

distribution of each variable is known and is easy to
sample from
1. Start with an initial guess Xy=(By ¢, B, , ..., 637)

2. Take a sample B, ; from P(B4| B, 4, B3, ..., 63¢) and
update B,

Take samples for B, to B; and update them

Take a sample 6, ; from P(6,| B, , ..., 6,4, 63,) and
update 6,

Take samples for C, to C; and update them
Take samples 8, to 8; and update them
Iterate 2~6 step Ntimes

Estimate P,.(6 | Do) ~ Histogram(Samples)
= P(6, | Dyp) ~ Histogram(6y .1, 6y ks2r -1 ken)
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Increasing Accuracy by Using
Controllability

= The method may miss a bug root-cause due to highly
limited observability

= However, we can increase accuracy and differentiate bug
root-causes by using controllability

controllable knob Now, the bug can be detected!
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Test Case — A5 Gbps I/O Link

= System Parameters (6)

= TX FFE, Channel, RX CTLE : pole / zero
= DFE: tap coefficients / slicer threshold
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Continuous Time Linear Equalizer

S-parameter channel model is from http://www.t11.org/ftp/t11/models/index.html




Experiment (1) —
The Posteriors Cover True Parameters As Expected

= Posterior distributions of FFE, channel and CTLE parameters and true
parameter locations

True pole/zero location (x / 0)
Estimated posterior distribution of pole/zero (x / 0)

Zero map of TX FFE Pole/zero map of channel Pole/zero map of CTLE



Experiment (2) — The Problematic Buggy
Channel Can be Identified

= In this experiment, a channel is replaced by a problematic
lossy channel

Channel RX EQ
Output Output

Frequency response of desired channel Frequency response of lossy channel



The Bug Localization and Ranking
Procedure

controllability to CTLE’s zero location
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Experiment (2) — A Buggy Lossy Channel is
Identified As the Bug Root-Cause

Pooo:(@in 6,,.) | Real(z1) | Imag(z1) | Real(p1) | Imag(p1) | Real(p2) | Imag(p2)

Channel 0.17% 100% 1.7% 5.4% 15% 5.4%
\

CTLE\ 65% 100% 58% 90% 63% 90% Desired Parameter Value (Narrow bar)
.« real(z)

\ Desired pole(x)/zero(0) locations

Estimated posterior distribution of pole/zero (x / 0)
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Conclusion

= Under limited observability, the proposed bug
method can automatically localize bugs
= Nonlinearity and uncertainty could be well reflected
= Can leverage controllability
= Can rank multiple bug root-causes

Bug Diagnosis: Does Posterior
cover a desired spec-range?




