

Variation Aware Cross-Talk Aggressor Alignment by Mixed Integer Linear Programming

Vladimir Zolotov

IBM T. J. Watson Research Center, Yorktown Heights, NY

zolotov@us.ibm.com

Peter Feldmann

D. E. Shaw Research, New York, NY

pfeldmann@gmail.com

Cross Coupling Noise

- Aggressor nets inject noise pulses into victim net through coupling capacitances
- Noise pulses can affect both state and transition of victim net causing functional and timing failures
- Conservative noise analysis:
 - All aggressor nets switch simultaneously
 - All aggressor noise pulses are combined
 - Typically by linear superposition
 - Can be too pessimistic
 - Because of neglecting circuit timing prohibiting simultaneous signal transitions

Cross-talk Aggressor Alignment

- Timing predicts EARLY and LATE signal arrival times
- Noise pulses occur only inside timing windows
 - Timing windows are defined by their start and end moments
- Only pulses of overlapping timing windows can be combined for total noise
 - Potential source of pessimism reduction
- Noise analysis computes combination of overlapping timing windows resulting in worst noise pulse
 - Well known sweeping line algorithms solves this problem

$$V = A1 + A2 + A3$$

Aggressor Alignment under Process Variation

- Process and environmental variations cause variability of timing windows
 - Sometimes it is not clear if windows align at some values of parameters

- Conservative approximation expands timing windows
- It can be too pessimistic leading to overestimation of the combined noise
 - Neglects that variations of start and end moments of windows are highly correlated
 - For example higher Vdd makes most transitions occur earlier
- There were several attempts to solve this problem
 - Methods were too complex for implementation, not general, inefficient and inaccurate for industrial applications
- Even full corner enumeration can be too optimistic, missing window overlap

Examples of variational timing windows

• Timing windows depend on one variational parameter: $T = T_0 + aX$

Conservative window expansion predicts false overlap

- Full corner enumeration fails to predict overlap of timing windows
 - Windows overlap only between process corners

Main Assumptions and Plan of Solution

- Variability is bounded with min/max corners $X_{j,min} \le X_j \le T_{j,max}$
 - Non-statistical approach
- Timing variability is linear function of variational parameters

$$T = T_0 + \sum_{j=1}^m a_j X_j$$

- Linear program for maximum voltage of single noise pulse
- Linear Program (LP) for deterministic aggressor alignment
 - Fails if not all timing windows intersect
- Mixed Integer Linear Program (MILP) for deterministic alignment
- MILP for variational aggressor alignment
- Analysis of efficiency and methods of its improvement
- Extension of MILP formulation to:
 - Victim sensitivity window
 - Non-triangle noise pulses
 - Aggressor switching constraints
 - Discontinuous timing windows

Formulation for Single Noise Pulse

- Noise pulse is defined with
 - its tip point (t_i, v_i)
 - its rising and falling slews: r_i and f_i
- Point G_i=(t,v_i) measures possible voltage due to i-th noise pulse at time t
- Linear inequalities constrain position of point G_i under rising and falling slopes of noise pulse
- Maximization of v_i moves point up to the rising or falling slope of the pulse

LP for Deterministic Aggressor Alignment

Maximize
$$\sum_{i=1}^{N} v_i$$
 subject to t, t_i, v_i
$$(v_i - h_i) - r_i(t - t_i) \leq 0$$

$$(v_i - h_i) - f_i(t - t_i) \leq 0$$

$$v_i \geq 0$$

$$T_{i,S} \leq t_i \leq T_{i,E}$$

- Shifts moments t_i of noise pulses for their alignment to maximize total noise
- Moves measurement t time to time moment with maximum total noise
- Restrict maximum total noise measurement to be taken inside noise pulses
- Require individual noise values to be positive
- Restrict noise pulses to stay inside timing windows

Failure of LP Formulation

$$\begin{array}{ll} \textit{Maximize} & \sum_{i=1}^{N} v_i & \textit{subject to} \\ t, t_i, v_i & & & \\ & (v_i - h_i) - r_i(t - t_i) \leq 0 \\ & (v_i - h_i) - f_i(t - t_i) \leq 0 \\ & & v_i \geq 0 \\ & T_{i,S} \leq t_i \leq T_{i,E} \end{array}$$

- If timing windows do not intersect their constraint are not compatible
 - Noise pulses cannot be aligned
- LP fails to compute maximum noise value, because it is infeasible
- However:
 - Worst aggressor alignment exists and maximum noise value can be computed

Deterministic Aggressor Alignment by MILP

Maximize $\sum_{i=1}^{N} v_i$ subject to t, t_i, v_i, p_i $(v_i - p_i h_i) - r_i (t - t_i) \le 0$ $(v_i - p_i h_i) - f_i (t - t_i) \le 0$ $T_{i,S} - \Theta(1 - p_i) \le t_i \le T_{i,E} + \Theta(1 - p_i)$

- Introduce binary variables p_i to facilitate selection of worst aggressor set
- Pulse heights are multiplied with p_i
- Timing window constraints are modified by adding relaxation term
- If *p_i=0*
 - → *i-th* noise pulse is excluded from consideration
 - i-th timing window is expanded to make window constraint is always satisfied
- If p_i=1 i-th noise pulse and its window are remained the same

Variational Aggressor Alignment by MILP

Start and end moments of timing windows are linear functions of variational parameters

$$T_{i,S} = T_{i,S,0} + \sum_{j=1}^{m} a_{i,S,j} X_j$$

$$T_{i,E} = T_{i,E,0} + \sum_{j=1}^{m} a_{i,E,j} X_j$$

$$T_{3,S} \qquad \qquad T_{3,E} \qquad \qquad \underbrace{Maximize}_{t,\ t_i,\ v_i\ ,X_j,\ p_i} \Sigma_{i=1}^N\ v_i \qquad subject\ to \\ (v_i-p_ih_i)-r_i(t-t_i) \leq 0 \\ (v_i-p_ih_i)-f_i(t-t_i) \leq 0 \\ \text{Variational timing constraints} \qquad \qquad T_{i,S,0} + \sum_{j=1}^m a_{i,S,j}\ X_j - \Theta(1-p_i) \leq t_i \\ T_{i,E,0} + \sum_{j=1}^m a_{i,E,j}\ X_j + \Theta(1-p_i) \geq t_i \\ \end{cases}$$

 $---- \rightarrow X_{j,min} \leq X_j \leq T_{j,max}$

Variational parameter constraints ____

Computational Efficiency and Its Improvement

- MILP is NP complete but problem of aggressor alignment is small
 - Integer variables are always binary
 - Number of integer variables is number of aggressors (<10)
 - Only a few noise clusters require variational analysis
 - Nets without noise violations for conservatively expanded windows are not considered
 - Nets with noise violations at nominal corner are not considered
- Matlab solves MILP for 10 aggressors in 25 iterations 30 msec in average
- Dimension of MILP problem can be reduced further
 - Conservatively approximate aggressors with small noise pulses
 - Assume their perfect alignment or
 - Approximate their variability conservatively by expanding their windows
 - Conservative approximation of small sources of variations by window expansion
 - Split set of aggressors and solve MILP for each subset
 - Guide MILP procedure to analyze integer variables in optimal order
 - Add fast out in MILP when
 - Lower bound exceeds noise threshold or
 - Upper bound is lower than threshold
 - Exclude wide timing windows overlapping with other windows deterministically
 - Combine conventional linear sweeping line algorithm with MILP algorithm

Extensions: Victim Sensitivity Windows

 Victim sensitivity window is modeled by adding its constraint to MILP formulation

Extensions: Non-triangle Noise Pulse

Formulation for trapezoidal noise pulse

In general case of piece-wise linear convex pulse:

- Oblique segment going through point $(t_{i,j}, h_{i,j})$ with slope $s_{i,j}$ is described with constraint:

$$(v_i - h_{i,j}) - s_{i,j}(t - t_{i,j}) \le 0$$

- Each horizontal segment is described with constraint $v_i \leq h_{i,k}$
- Each vertical segment is described with constraint $t \leq t_i$

Extensions: Aggressor Switching Constraints

- Circuit logic can restricts aggressors from simultaneous switching
 - Among aggressors belonging to group $G=\{A1, A3, A4\}$ only M can switch simultaneously
 - If M=1 it means mutual exclusive switching
- MILP formulation can be extended take into account switching constraints
 - Adding inequalities on variables controlling aggressor selection

Extensions: Discontinuous Windows

- Aggressor and victim of different clocks result in discontinuous timing windows
- Aggressor with timing window consisting of *M* intervals *W₁*,
 W₂, ..., *W_M* is modeled as:
 - M aggressors with timing windows $W_1, W_2, ..., W_M$ and
 - Constraint $\sum_{k=1}^{M} p_k \leq 1$ imposed on binary variables p_1 , p_2 , ..., p_M of MILP formulation
 - Selects single noise pulse

Experiments with Many Aggressors: Setup

Modeling realistic distribution of timing windows

- Random distribution of timing windows inside clock cycle
- Uniform distribution of mean values of window width
- Random amount of correlated and uncorrelated variability

Same noise pulses of unit height

 All aggressors have same importance

Cases with:

- 3, 5 and 10 aggressors
- Different clock cycles,
- Different min/max values of window width
- Different values of correlated and uncorrelated variability

Up to 11 sources of variations

Experiments with Many Aggressors: Results

- Experiment for 100 different values from nominal and conservative bounding methods
 - Only cases requiring variational analysis
- Best accuracy from corner enumeration. Worst accuracy from nominal analysis.
- Number of MILP iterations much fewer than number of corners

Ехр	#	# MILP iter	Error of noise computation								
Num	Agg		Nominal			Bounding			Enumerating		
			#Err	Max	Avr	#Err	Max	Avr	#Err	Max	Ave
1	3	3.27	79	-2	0.69	31	1.0	0.22	1	-0.19	0.002
2	3	1.48	69	-1	0.58	43	1.0	0.33	3	-0.37	0.01
3	3	1.62	75	-1	0.52	43	1.0	0.28	2	-0.41	0.005
4	5	11.6	94	-2	0.75	31	1.0	0.23	7	-0.66	0.024
5	5	4.1	85	-2	0.71	36	1.0	0.27	3	-0.5	0.012
6	5	3.94	83	-1.7	0.67	42	1.73	0.31	2	-0.1	0.001
7	10	56.3	91	-4	1.27	62	2.0	0.52	21	-1.17	0.12
8	10	16.4	97	-4	1.29	62	2.0	0.58	23	-1	0.098
9	19	17.1	90	-2.4	0.93	58	1.94	0.45	7	94	0.03

Conclusions

- Analyzed cross-talk aggressor alignment under process variation
- Showed that even enumeration of all corners fails to find worst alignment
- Developed MILP technique for computing worst aggressor alignment under process variation
 - Conservative non-statistical approach compatible with conventional corner-analysis
- Extended MILP technique for
 - victim sensitivity windows,
 - non-triangle noise pulses,
 - aggressor switching constraints,
 - discontinuous timing windows
- Many special problems of cross-talk aggressor alignment can be solved with same MILP solver
- MILP solver computes not only worst noise and alignment, but also worst corner and sensitivities of noise to variations
- Experiments showed that MILP of aggressor alignment can be solved efficiently
- Outlined several methods (exact and heuristic) for further improving computational efficiency