
Stratix 10 HyperFlex Architecture Overview

Tom Spyrou

Distinguished Architect

TAU 2016

Delivering the Unimaginable

Now part of Intel

2X
Core Performance

5.5M
Logic Elements

3D SiP
Integration

70%
Up to

Lower Power

10Up to

TFLOPS 14 nmIntel

Tri-Gate

Security

Most

Comprehensive
Cortex-A53

Quad-Core

ARM Processor

Heterogeneous

Why Develop a New Architecture?

3

Today’s architectures will not hold up to tomorrow’s

performance demands
− Making on-chip buses wider and wider is not sufficient, need to do more

Need bigger step forward than we get with evolution
− As geometries shrink, interconnect delays are dominating

HyperFlex built on familiar concepts 9
− Retiming, Pipelining, Optimization

With an innovative new approach
− Not possible with conventional architecture

HyperFlex is New …

and It’s a Big Improvement!

The HyperFlex Solution

4

HyperFlex has registers throughout the core fabric

Bypassable Hyper-Registers in every routing segment

Bypassable Hyper-Registers on all block inputs
− ALMs, M20K blocks, DSP blocks, IO cells

Register location is fine-grained
− Throughout the interconnect

− Available in optimal locations

Allows new and better approach to
− Retiming

− Pipelining

− Optimization

clk CRAM

config

Bypassable Hyper-Register

Available “everywhere” throughout
user logic and interconnect

The HyperFlex Architecture – A Fine Grained Approach

5

Number of Hyper-Registers >10X

Number of ALM Registers!

ALM ALM

ALM ALM

ALM ALM

ALM

ALM

ALM

= Hyper-Register

All New Stratix 10 HyperFlex Architecture

6

Hyper-Registers throughout the FPGA fabric enable
− Fine grain Hyper-Retiming to eliminate critical paths

− Zero latency Hyper-Pipelining to eliminate routing delays

− Flexible Hyper-Optimization for best-in-class performance

Hyper-Aware design flow for accelerated timing closure with
− Post place & route performance tuning

− Hyper-register enabled synthesis and place & route for efficient pipelining

− Fast Forward compilation enabling performance exploration

Programmable clock tree synthesis offers
− ASIC-like clocking to mitigate skew & uncertainty

− Lowers power through intelligent clock enablement

Why Stratix 10 is Fast

Conventional architectures
− Using register stages incurs significant additional delay

− Limits number of pipeline stages that can be added

HyperFlex architecture
− Significantly reduce cost of adding pipeline stages to a design

7

Routing Wire Routing Wire

LAB

Routing Wire Routing Wire

Local

Routing

~200 ps

Local

Routing

~100 ps

LUT

LUT Delay

Why Stratix 10 is Fast

HyperFlex architecture
− Significantly reduce cost of adding pipeline stages to a design

8

Routing Wire Routing Wire Routing Wire Routing Wire

LAB
Local

Routing

~200 ps

Local

Routing

~100 ps

LUT

LUT Delay

Background: Routing Muxes

Large portion of die area

is routing muxes

9

� Each routing mux
selects one signal to be
output on routing wire
− H3, H6, V4, etc, or into LAB

� Routing muxes
interconnected
(“routing pattern”)

Stratix 10 HyperFlex Routing Muxes

Extend routing muxes to include “register” stage

10

� 1 or 2 extra CRAM bits

programmed to select a

clock for the “register”

HyperFlex HW: Extra Register Locations

Add extra register locations
1. Bypassable registers in routing muxes

11

Routing muxes feeding programmable wires

(H-wires, V-wire) can optionally be registered

HyperFlex HW: Extra Register Locations

Add extra register locations
1. Bypassable registers in routing muxes

2. Bypassable inputs to LUTs, FFs, DSPs, etc.

12

Inputs to FFs (shown)

have optional bypassable registers

Bypassable

HyperFlex HW: Extra Register Locations

Add extra register locations
1. Bypassable registers in routing muxes

2. Bypassable inputs to LUTs, FFs, DSPs, etc.

13

LUT Inputs have

bypassable registers

Upper LUT

Circuitry &

Arithmetic

Lower LUT

Circuitry &

Arithmetic

dataa

datab

datac0

datac1

datae1

dataf1

dataf0

datae0 R

R

R

R

gnd

vcc

FF feedback

FF feedback

To FFs

To FFs

K

K

K

K

K

K

K

K

K

K

K

K

HyperFlex HW: Extra Register Locations

Add extra register locations
1. Bypassable registers in routing muxes

2. Bypassable inputs to LUTs, FFs, DSPs, etc.

14

DSP / RAM Inputs have

bypassable registers

How Do We Get to 2X Performance?

15

Three-step process to achieve maximum performance

Most of the gain comes from the first two steps
− Uses well understood retiming and pipelining techniques

− Large performance gains come from relatively small effort

More effort required to implement the third step
− May be required to achieve 2X or more performance gain

Step
Architecture

Advantage

Customer

Effort

Stratix 10 versus

Stratix V

(Average Gain)

1 Hyper-Retiming
No change, or

minor RTL changes
1.4X

2 Hyper-Pipelining Added Pipelining 1.6X

3 Hyper-Optimization More Effort 2X or more

Core Performance is More Than Just Performance

16

More Performance
− Enabling higher performance applications

Higher Productivity and Time to Market
− Reduce engineering development time

− Close timing faster

Reduce Device Cost
− Choose a less-expensive slower device

With HyperFlex 2X performance, can you use a
slower speed grade device?

− Choose a less expensive smaller device

Can you use a smaller device now that you have
Hyper-Registers throughout the fabric?

Could you run your bus at 1/2 the width and twice
the frequency?

Bus
Half-width

Bus
9 ..

Hyper-Retiming

Conventional Register Retiming

18

ALM ALM ALM
Before

Retiming

286MHz

Short

interconnect

Long interconnect

(many hops)

Logic LogicLogic

1.5ns 3.5ns

Conventional Register Retiming

19

ALM ALM ALM
Before

Retiming

286MHz

ALM ALM ALM

3ns

After

Retiming

333MHz

Shorter interconnect

(fewer hops)

Short

interconnect

ALM

Shorter interconnect

(fewer hops)

Logic Logic

2.5ns

Short

interconnect

Long interconnect

(many hops)

Logic LogicLogic

Logic

1.5ns

286MHz ���� 333MHz = 16% gain

3.5ns

Hyper-Retiming

20

ALM ALM ALM

3.5ns

Before

Retiming

286MHz

Short

interconnect

Long interconnect

(many hops)

Logic LogicLogic

1.5ns

Hyper-Retiming

21

ALM ALM ALM

2.5ns

Hyper

Retiming

400MHz

Shorter interconnect

(fewer hops)Short

interconnect

Shorter interconnect

(fewer hops)

2.5ns

Logic Logic Logic

ALM ALM ALM

3.5ns

Before

Retiming

286MHz

Short

interconnect

Long interconnect

(many hops)

Logic LogicLogic

1.5ns

286MHz ���� 400MHz = 40% gain

Hyper-Register

Hyper-Retiming step occurs AFTER

place & route!

Unique challenges for STA

22

In clock crossing the retimed register may be moved to a

different clock but still achieve identical sequential

behavior

Incremental timers often assume no change to the clock

network and are not incremental with this type of change

CRPR credits must also be recalculated incrementally

Reconverge points updated incrementally

FPGA’s have large clock latency compare to ASICs

Increased latency already increases cost of CRPR

Now there are many more latch start points which need

crpr tags with which to calculate the credit at the endpoint

TimeQuest 2 STA solves both of these problems

HyperFlex Performance Benchmarks

Benchmark Results From Real Designs

24

Benchmark Data Path Control Logic Co-Processor

Design Target > 700 MHz > 550 MHz 300 MHz

Baseline 302 MHz (1X) 132 MHz (1X) 156 MHz (1X)

+ Hyper-Retiming 426 MHz (1.4X) 185 MHz (1.4X) 205 MHz (1.3X)

+ Hyper-Pipelining 518 MHz (1.7X) 276 MHz (2.1X) 305 MHz (1.96X)

+ Hyper-Optimization 745 MHz (2.4X) 623 MHz (4.7X) Not required

Thank YouThank You

