Highly-dense Mixed Grained Reconfigurable Architecture with Via-switch Ryutaro Doi^{1,6} Junshi Hotate^{2,6} Takashi Kishimoto^{2,6} Toshiki Higashi^{2,6} Hiroyuki Ochi^{2,6} Munehiro Tada^{3,6} Tadahiko Sugibayashi^{3,6} Kazutoshi Wakabayashi^{3,6} Hidetoshi Onodera^{4,6} Yukio Mitsuyama^{5,6} Masanori Hashimoto^{1,6} ¹Osaka University ²Ritsumeikan University ³NEC ⁴Kyoto University ⁵Kochi University of Technology ⁶JST, CREST nanocrest@gmail.com #### Contribution 26X higher density 66% smaller interconnect delay at 0.5V #### Via-switch Atom SW: Electrochemical nonvolatile R-change device On-R can be reduced to 200Ω . ## Why two program lines? Atom SW under intentional programming Atom SW under unintentional programming On-state Atom SW 🦟 Off-state Atom SW With a single program line, unintentional programming will happen. ## Why two program lines? Atom SW under programming On-state atom SW Off-state atom SW With two program lines, unintentional programming will not happen. Multiple-ON in a column enables multiple fanouts. > Other lines floating ## Interconnect Performance Evaluation (65nm) ## Comparison w/ SRAM-based FPGA (TMG+SRAM crossbar) #### Conclusion - Proposed a highly-dense reconfigurable architecture that exploits via-switch. - 26X higher density - Interconnection delay is reduced by 35% (1.0V) and 66% (0.5V) - Interconnection energy is reduced by 71% (1.0V) and 82% (0.5V) - Future works - Import long wire interconnection - Application mapping and performance evaluation