Highly-dense Mixed Grained Reconfigurable Architecture with Via-switch

Ryutaro Doi1,6 Junshi Hotate2,6 Takashi Kishimoto2,6 Toshiki Higashi2,6 Hiroyuki Ochi2,6 Munehiro Tada3,6 Tadahiko Sugibayashi3,6 Kazutoshi Wakabayashi3,6 Hidetoshi Onodera4,6 Yukio Mitsuyama5,6 Masanori Hashimoto1,6
1Osaka University 2Ritsumeikan University 3NEC 4Kyoto University 5Kochi University of Technology 6JST, CREST

nanocrest@gmail.com
Contribution

26X higher density
66% smaller interconnect delay at 0.5V

SRAM + MOS SW in FEOL

“Via-switch” in BEOL

Conventional FPGA

Proposed Architecture

Logic (LUT)

FEOL layer

Varistor

BEOL layer

Atom SW

Logic (Arithmetic/Memory Unit+MUX for LUT)
Atom SW: Electrochemical nonvolatile R-change device
On-R can be reduced to 200Ω.
Why two program lines?

With a single program line, unintentional programming will happen.

Other lines floating
Why two program lines?

With two program lines, unintentional programming will not happen.

Multiple-ON in a column enables multiple fanouts.

Other lines floating
Proposed crossbar structure

Bi-directional → Higher usage → Smaller crossbar

Signals from 4 directions can be input/output due to multiple fanouts

Close-packed via-switch → Higher density → Smaller crossbar

On-demand repeater insertion
Interconnect Performance Evaluation (65nm)

Smaller crossbar thanks to bidirectional signaling reduces delay and energy.

117x80 or 157x120 crossbars
No repeaters
@1.0V

Delay/energy can be optimized by flexible buffering.

117x80 crossbar
@1.0V
Comparison w/ SRAM-based FPGA (TMG+SRAM crossbar)

26X higher area density

1.0V

117x80 crossbar repeater inserted

(a) Conventional 35% reduction
(b) Conventional 71% reduction

Conventional Proposed

0.5V

On-R of via-switch is independent of supply voltage.

117x80 crossbar repeater inserted

(a) Conventional 66% reduction
(b) Conventional 82% reduction

Conventional Proposed

0.5V
Conclusion

• Proposed a highly-dense reconfigurable architecture that exploits via-switch.
 – 26X higher density
 – Interconnection delay is reduced by 35% (1.0V) and 66% (0.5V)
 – Interconnection energy is reduced by 71% (1.0V) and 82% (0.5V)

• Future works
 – Import long wire interconnection
 – Application mapping and performance evaluation