Highly-dense Mixed Grained Reconfigurable Architecture with Via-switch

Ryutaro Doi^{1,6} Junshi Hotate^{2,6} Takashi Kishimoto^{2,6} Toshiki Higashi^{2,6} Hiroyuki Ochi^{2,6} Munehiro Tada^{3,6} Tadahiko Sugibayashi^{3,6} Kazutoshi Wakabayashi^{3,6} Hidetoshi Onodera^{4,6} Yukio Mitsuyama^{5,6} Masanori Hashimoto^{1,6}

¹Osaka University ²Ritsumeikan University ³NEC ⁴Kyoto University

⁵Kochi University of Technology ⁶JST, CREST

nanocrest@gmail.com

Contribution

26X higher density 66% smaller interconnect delay at 0.5V

Via-switch

Atom SW: Electrochemical nonvolatile R-change device On-R can be reduced to 200Ω .

Why two program lines?

Atom SW under intentional programming

Atom SW under unintentional programming

On-state Atom SW 🦟 Off-state Atom SW

With a single program line, unintentional programming will happen.

Why two program lines?

Atom SW under programming

On-state atom SW

Off-state atom SW

With two program lines, unintentional programming will not happen.

Multiple-ON in a column enables multiple fanouts.

> Other lines floating

Interconnect Performance Evaluation (65nm)

Comparison w/ SRAM-based FPGA (TMG+SRAM crossbar)

Conclusion

- Proposed a highly-dense reconfigurable architecture that exploits via-switch.
 - 26X higher density
 - Interconnection delay is reduced by 35% (1.0V) and 66% (0.5V)
 - Interconnection energy is reduced by 71% (1.0V) and 82% (0.5V)
- Future works
 - Import long wire interconnection
 - Application mapping and performance evaluation