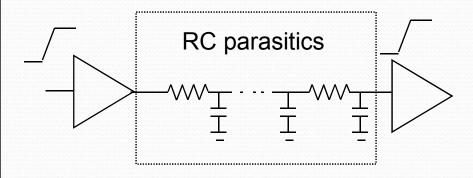
Accurate Timing Updates for Circuit Optimization without Explicit Parasitic Data

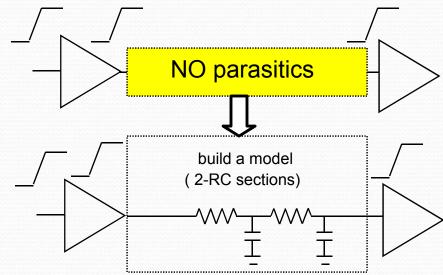
Ruiming Li, Rajendran Panda, Tong Xiao, Ted Hong, Xiaomi Mao Oracle Corporation, USA

Outline


- Motivation
- New approach to update timing in circuit optimization without explicit parasitic data.
- Results and Conclusion

Motivation

- Our in-house tool fixing timing violations
 - Need quick timing estimation with good accuracy
 - Timing data from reference timer as a starting point
 - Need light weight without using netlist parasitic


Method to estimate timing without parasitics

Traditional delay/slew estimation

• Compute delay/slew by: SPICE, AWE, RICE, PRIMA, D₂M, S₂M, etc.

Our estimation flow

- Compute new delay/slew after gate sizing by: D2M, S2M.
- Memory saved from parasitics. Runtime saved from parasitic reduction

How to construct net model?

• Known data before sizing gates: **tr**, **d**, **s**, **C**total, **C**L

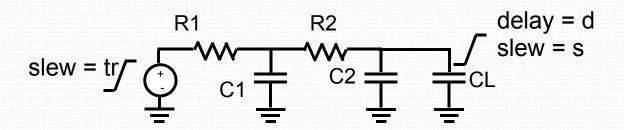


Figure 2: Net model computation

- First, find two moments **m1** and **m2** from **tr, d, s**
- Compute R1 and R2 from m1 and m2

Net Model: Leverage D2M and S2M reversely

D2M (Ref [5])

• Step input:
$$Delay_{D2M} = \frac{m_1^2}{\sqrt{m_2}} \ln 2$$

. Ramp input: $Delay_{D2M_{ramp}} = -(1-\alpha)m_1 + \alpha * Delay_{D2M}$ (1)

$$\alpha = \left(\frac{2 m_2 - m_1^2}{2 m_2 - m_1^2 + tr^2 / 12} \right)^{\frac{5}{2}}$$

• S2M (Ref [7])

• Step input:
$$Slew_{D2M} = \frac{\sqrt{-m_1}}{\sqrt[4]{m_2}} \ln 9\sqrt{2m_2 - {m_1}^2}$$

. Ramp input:
$$Slew_{D2M_{ramp}} = \sqrt{Slew_{D2M}^2 + tr^2}$$
 (2)

Net Model: Compute moments m1 and m2

• The relationships between **m1**, **m2** and **d**, **s** and **tr** are

$$\begin{cases} -(1-\alpha)m_1 + \alpha * \frac{m_1^2}{\sqrt{m_2}} \ln 2 = d \\ \frac{-m_1}{\sqrt{m_2}} (\ln 9)^2 (2m_2 - m_1^2) + tr^2 = s^2 \end{cases}$$
 (3)

- Solving (3) iteratively w. r. t. α (initial α = 1)
- For fixed lpha , (3) reduces to cubic equation

$$a_3 m_1^3 + a_2 m_1^2 + a_1 m_1 + a_0 = 0$$

which has closed form solution.

Net Model: compute R's and C's

R1, and R2 are computed from m1 and m2 with C1 + C2 =
 C_total

R1
R2

$$\begin{cases} -R_{1}(C_{1} + C_{2} + C_{L}) - R_{2}(C_{2} + C_{L}) = m_{1} \\ -R_{1}R_{2}C_{1}(C_{2} + C_{L}) + m_{1}^{2} = m_{2} \end{cases}$$
(4)

• In the absence of positive solutions for R's and C's, solve the Least Square problem.

min
$$[m_1 + R_1(C_1 + C_2 + C_L) + R_2(C_2 + C_L)]^2 + [m_2 + R_1R_2C_1(C_2 + C_L) - m_1^2]^2$$

s. t. $R_1, R_2, C_1, C_2 > 0$

Gate Delay/Slew Based on Net Model

• Find new Ceff based on net model

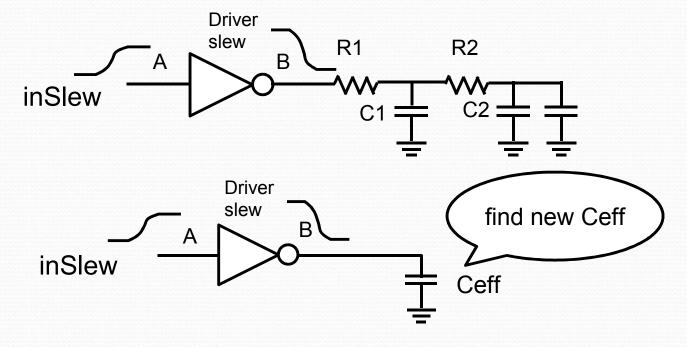
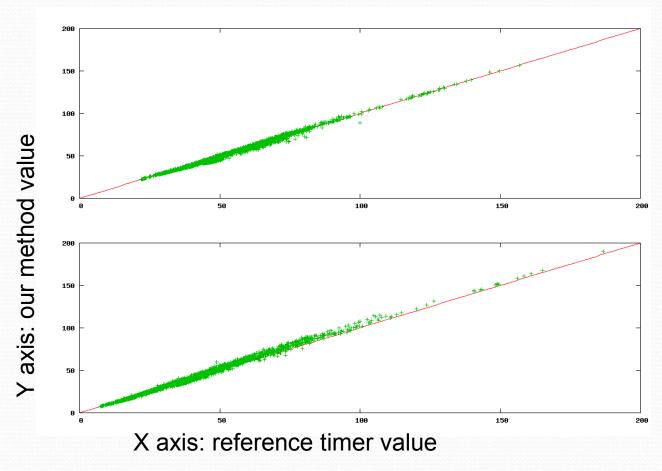


Figure 3: gate driving ceff or net delay model

Extension to Current Source Model

- Modifications to handle CSM
 - The interconnect net models are derived from the initial timing results of CSM reference timer.
 - For the receiver model, the average of two receiver capacances is used as load cap (CL in Figure 2).

Experimental Results


- The presented method is implemented in our inhouse tool.
- Benchmarked 4 design blocks

Number of Gates: 35K ~ 730K

Number of Nets: 36K ~ 789K

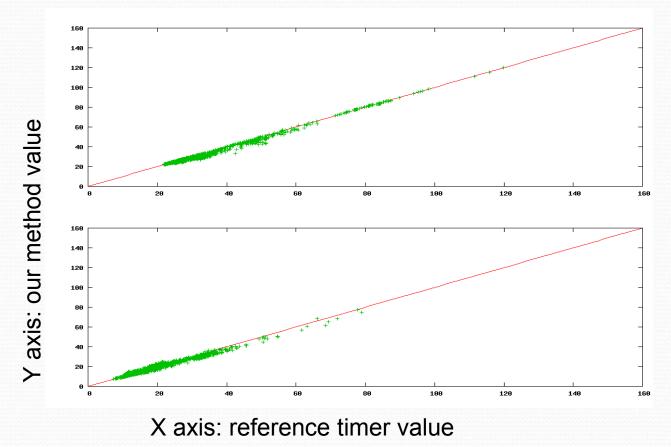

Technology Node: TSMC 20nm.

Figure 4: NLDM delays and slews of net correlation with reference timer

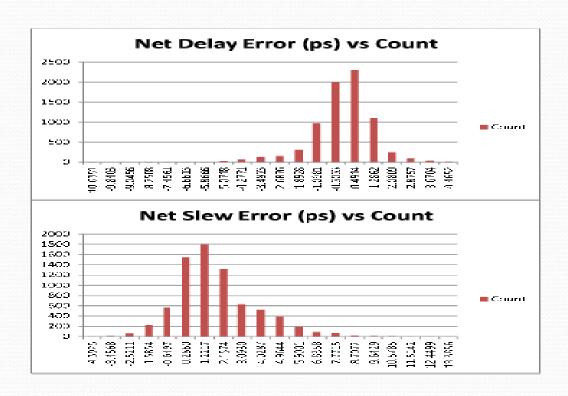
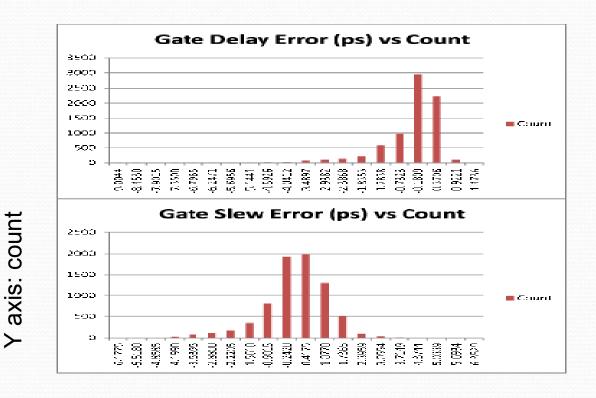

Top: net delay comparison between reference timer and our method bottom: net slew comparison between reference timer and our method

Figure 5: NLDM delays and slews of gate correlation with reference timer

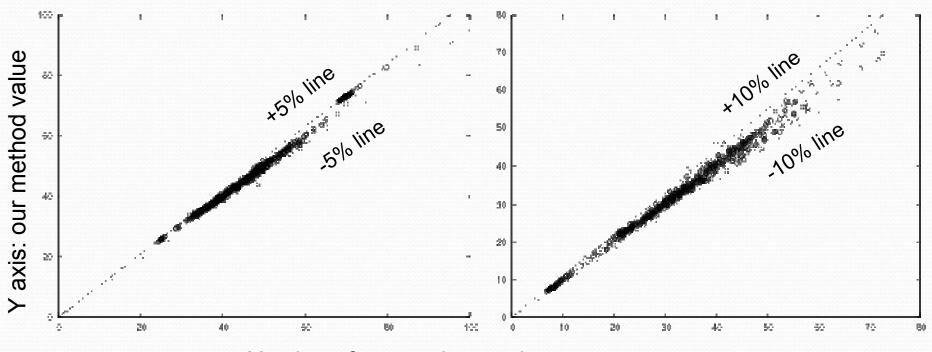
Top: gate delay comparison between reference timer and our method bottom: gate slew comparison between reference timer and our method


Figure 6: NLDM delay and slew error distribution for nets

axis: count

X axis: Error (ps) vs reference timer

Figure 7: NLDM delay and slew error distribution for gates



X axis: Error (ps) vs reference timer

Table 1: average and max diff. of NLDM delays and slews w. r. t. reference timer, and memory save.

desi gns		net delay		net slew		gate delay		gate slew		Mem w/o	Mem save
	Ave. diff(ps)	Max diff(%)	Ave. diff(ps)	Max diff(%)	Ave. diff(ps)	Max diff(%)	Ave. diff(ps)	Max diff(%)	Para (MB)	Para (MB)	(%)
dı	0.523	8.39	0.415	10.44	-0.535	9.98	0.537	17.85	1060	447	57.8%
d2	0.0342	9.75	0.229	14.31	0.435	12.19	0.151	17.01	5739	836	85.4%
d3	0.736	8.82	0.964	15.74	0.931	14.33	0.43	19.90	2823	1108	60.8%
d4	-0.0247	9.99	0.953	16.42	-0.298	16.45	-0.0211	19.81	4234	1452	65.7%

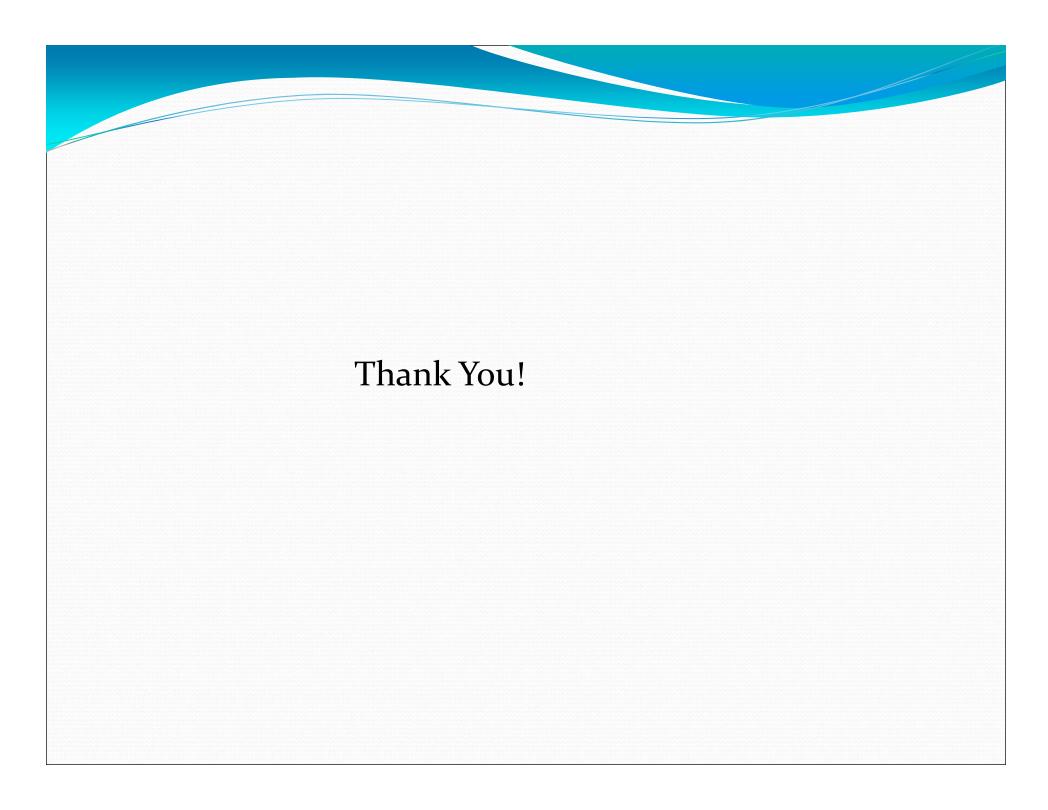
Figure 8: CSM stage delays and slews of net and gate correlation with reference timer

X axis: reference timer value

Left: stage delay comparison between referene timer and our method. Most are within +-5% lines

Right: gate slew comparison between reference timer and our method. Most are within +-10% lines

Conclusion


- A new approach to estimate delay and slew without explicit parasitic data is presented and implemented.
- Excellent accuracy with this fast computation method has been established by qualifying on many designs and comparing the timing results with reference timer.

References

- [1] L. T. Pillage, R. A. Rohrer, Asymptotic waveform evaluation for timing analysis, IEEE Transactions on CAD, pp. 352 366, Vol. 9, No. 4, 1990.
- [2] C. L. Ratzlaff, L. T. Pillage, RICE: rapid interconnect circuit evaluation using AWE, IEEE Trans. on CAD of Integrated Circuits and Systems, 1994, Vol. 13, No. 1, pp. 763-776.
- [3] R. W. Freund, P. Feldmann, Reduced-Order modeling of large passive linear circuits by means of the SyPVL algorithm, IEEE/ACM International Conference on Computer-Aided Design, 1996, pp. 280 287.
- [4] A. Odabasioglu, M. Celik, L.T. Pileggi, PRIMA: passive reduced-order interconnect macromodeling algorithm, IEEE Transactions on CAD, pp. 645-654, Vol. 17, No. 8, 1998.
- [5] C. J. Alpert, A. Devgan, and C. V. Kashyap, RC Delay Metrics for Performance Optimization, IEEE Transactions on CAD, Vol. 20, No. 5, 2001.
- [6] C. V. Kashyap, C. J. Alpert, F. Liu, and A. Devgan, Closed-Form Expressions for Extending Step Delay and Slew Metrics to Ramp Inputs for RC Trees, IEEE Transactions on CAD, Vol. 23, No. 4, 2004.
- [7] K. Agarwal, D. Sylvester D. Blaauw, Simple Metrics for Slew Rate of RC Circuits Based on Two Circuit Moments, DAC 2003.
- [8] J. Qian, S. Pullela, and L. Pillage, Modeling the "Effective Capacitance" for the RC Interconnect of CMOS Gates, IEEE Transactions on CAD, Vol. 13, No. 12, 1994.
- [9] F. Dartu, N. Menezes, and L. Pileggi, Performance Computation for Pre-Characterized CMOS gates with RC loads, IEEE Transactions on CAD, Vol. 15, No. 5, 1996.

Acknowledgement

- Richard Cheung
- Marat Shnur
- Prashant Kabra
- Robert Chung
- Prathyusha Lingambhotla
- Jimmy Cheng
- Bing Shi

