

Transistor Size Optimization Methodology for Logic Circuits Considering Variations caused by BTI and Process

TAU 2016 Thursday, March 10, 2016

Michitarou YABUUCHI, Kazutoshi KOBAYASHI Kyoto Institute of Technology

Summary

Transistor Size Optimization Technique

- BTI (Bias Temperature Instability) and process variations into consideration
- Lifetime delay of logic path 4.4% reduced ⁽²⁾
- Area no overhead <a>©
- # of cells in library 3x~ ⁽²⁾

Background – Aging Degradation

Scaling – increase aging degradation Prediction and compensation – INDISPENSABLE

Transistor Size Optimization

Conventional – initial delay based

Impact of BTI on Inverter

- Since 45 nm process Both BTI
- Imbalance T_{dr} and T_{df} degradation

Purpose of This Study

- Propose lifetime delay based
- Key ideas
 - Consider "lifetime experience" in logic gate design
 - Optimize transistor size to reduce "BTI-induced variation"
- Design cells for DF (Duty Factor) = 0, 0.5, 1

Sizing – BTI-Induced Variation

Enlarge transistor size – reduce BTI variation

Results of Size Optimization

$$Lp = Ln = 45 nm$$

 $Wp + Wn = 700 nm$

Simulation Result – INV Chain

Conventional (initial based)

Initial: 64.8 ps

Lifetime: 76.6 ps

4.4%

Proposed (lifetime based)

Initial: 66.5 ps

Lifetime: 73.2 ps

Lifetime delay – improved w/o area overhead

Conclusion

- Transistor size optimization technique
 - Conventional initial delay based
 - Lead to large timing margin
 - Proposed lifetime delay based
 - Path delay of inverter chain improved by 4.4%
 - No requirement of area overhead
 - Support dependable and efficient chip designs

Thank you for listening!

BTI (Bias Temperature Instability)

NBTI (Negative BTI) on PMOS

PBTI (Positive BTI) on NMOS

Technique to Overcome Degradation

Adaptive Non-adaptive **Techniques Techniques** Body biasing Sizing Adaptive Strengthen Supply Voltage

- Overhead required
- Based on aging prediction

Physics – Atomistic Trap-Based Model

AT-B Model

●: Defect (capture) ○: Defect (emission)

Defect – capture and emit carriers

Calculate $\Delta V_{\rm th}$ Distribution by BTI

Defect-centric distribution

Input: transistor size, stress condition

Product of Nt and η

Nt: number of defect (Poisson dist.)

η: impact of single defect (Exp. Dist.)

Output: $\Delta V_{\rm th}$

Physics – Scaling of BTI

Number of defect – decrease ↓
Impact of single defect – increase ↑

- Average μ_{BTI} constant
- Deviation σ_{BTI} area dependent ($\propto 1/\sqrt{LW}$)

Aging-aware Library

Optimization for Multi-input Gate

