Efficient Transistor-level Timing Yield Estimation via Line Sampling

Hiromitsu Awano and Takashi Sato (Kyoto Univ.)

Introduction: increasing device density

Shrinkage of semiconductor manufacturing process still continues

• <u>Advantage</u>:

Integrate billions of transistor into small silicon chip, enhancing computational power with device cost remained

• <u>Problem</u>:

Increasing process variability further complicates circuit design Representative examples include SRAM cell design:

Modern processor embeds large cache memory, requiring extremely high-level of reliability for single bit cell

Estimation of RARE circuit failure probability becoming increasingly important

2016/3/10

Introduction: increasing demand for computational resource

- Development of computationally heavy task: machine learning
 - Deep learning: stacked layers to achieve high performance but require high computational cost
- Massively parallel processor to cope with increasing demand for computational resource
 - Graphical processing unit (GPU) as general purpose accelerator
 - TrueNorth, neuromorphic chip from IBM
- Small arithmetic circuit is highly repeated to form an entire processor

Facing similar problem as SRAM cell design, i.e. extremely high-level of reliability is required for elemental circuit

Accurate timing yield estimation is thus an important challenge

2016/3/10

Difference between SRAM yield estimation and timing yield estimation

No. of random variables required

Random variable represents Vth, gate length or width mismatches

Shape of failure boundary

SRAM cell yield estimation

No more than 100

Timing yield estimation of combinational circuit 1000 or more

Complicated failure boundary

Hyper-plane-like failure boundary

Efficient algorithm for LARGE but SIMPLE system is required

2016/3/10

Line sampling: suitable for simple failure boundary problem

1. Initialize a sampling direction: α

for *i* in 1 to *N* do

- **2.** Randomly generate line l_i such that $l_i \parallel \alpha$
- **3.** Probe variability space along l_i

Calculate failure probability when random variables are conditioned on line *l_i*:

$$p_{LS}^i = P(F|\boldsymbol{x} \text{ on } l_i)$$

end for

Contributions from all of lines are summed up to obtain failure probability: $p_{\text{fail}} = \frac{1}{N} \sum_{i=1}^{N} p_{LS}^{i}$

Probe variability space using LINES not POINTS

Efficiency of line sampling

Shape of failure boundary have huge impact on sampling efficiency

If failure boundary is more closer to hyperplane, line sampling can achieve better efficiency

Selecting sampling direction α

Direction α should be almost perpendicular to achieve good sampling efficiency

Almost linear relationship between signal propagation delay and variability can be assumed

 α is approximated by gradient of signal propagation delay:

$$s_d \approx \frac{\partial y(\mathbf{x})}{\partial x_d} \bigg|_{x_d=0} \approx \frac{y(\Delta \cdot \mathbf{1}_d) - y(-\Delta \cdot \mathbf{1}_d)}{2\Delta}$$

 $s = (s_1, s_2, \dots, s_D)$ is normalized to obtain α : $\alpha \approx s/|s|$

Experimental condition

Target circuit: ISCAS'85

c432 : c499/c1355 . c880 : c1908 :	interrupt controller 32-bit SEC circuit 8-bit ALU 16-bit SEC/DED circuit	c2670 : 12-bit ALU and controller c3540 : 8-bit ALU c5315 : 9-bit ALU c6288 : 16x16 multiplier c7552 : 32-bit adder/comparator
		C7552.52-Dil adder/Comparator

- Synthesized assuming a commercial 65-nm technology and critical path is extracted
- Random variations are introduced to threshold voltages and gate lengths so as to assume process variability

Threshold voltages $(V_{TH}): \Delta V_{TH} \sim N(0, A_{V_{TH}})/\sqrt{L \cdot W}$ Gate length $(l_g): \Delta l_g \sim N(0,5 \times 10^{-9})$ $N(\mu, \sigma):$ Gaussian distribution

 $A_{V_{TH}}$: Pelgrom coefficient

Experimental results: comparison against Subset simulation

Relationship between # of circuit sim. and estimated results are shown

- Both LS and SubSim converge to same result, indicating correctness of LS
- Even under low V_{DD} condition (less linearity, harsh condition for LS), LS converges faster than SubSim

2016/3/10

Experimental results: Accuracy comparison

Relationship between # of sim. and estimation error is shown

2016/3/10

Experimental results for other circuits

of sim. is set to 10k i.e. achievable accuracy with same calculation time is compared

Circuit	Subet Simulation		Line sampling		A/B	Dim
	Pfail	Error (A)	Pfail	Error (B)		
C432	1.35e-4	106	1.28e-4	4.18	25.4	616
c499	7.72e-5	112	1.10e-4	2.62	42.7	468
C880	1.06e-4	110	1.19e-4	2.53	43.5	608
C1355	1.54e-4	108	1.16e-4	2.68	40.3	472
C1908	9.45e-5	110	9.08e-5	2.18	50.5	584
C2670	9.97e-5	111	1.04e-4	3.87	28.7	548
C3540	1.26e-4	109	9.92e-4	3.98	27.4	804
C5315	1.13e-4	108	1.09e-4	4.60	23.5	596
C6288	9.57e-5	110	9.60e-5	8.06	13.6	1984
C7552	9.99e-5	111	8.82e-5	4.48	24.8	2536

13.6 times to 50.5 times more accuracy can be achieved

2016/3/10

Summary

Massive parallel architecture attracts increasing attention

- Facing similar problem as SRAM design (high-level of reliability is required for each core)
- Accurate timing yield estimation is thus required

Our proposal: Application of line sampling (LS)

• LS perfectly fits the analysis of simple but large system

Numerical experiment using ISCAS'85 c432 showed that...

LS achieved 14 times (when V_{DD} is 0.6V) 300 times (when V_{DD} is 1.2V) faster convergence compared with Subset simulation

