

The TAU 2016 Contest

Timing Macro Modeling

Jin Hu IBM Corp.

[Speaker]

Song Chen Synopsys

Xin Zhao IBM Corp.

Xi Chen Synopsys

TAU 2016 Workshop – March 10th-11th, 2016

Motivation of Macro Modeling

Performance

Full-chip timing analysis can take days to complete – billions of transistors/gates Observation: Design comprised of many of the same smaller subdesigns Solution: <u>Hierarchical</u> and <u>parallel</u> design flow – analyze once and reuse timing models

2

Motivation of Macro Modeling

Performance

Full-chip timing analysis can take days to complete – billions of transistors/gates

Observation: Design comprised of many of the same smaller subdesigns

Solution: <u>Hierarchical</u> and <u>parallel</u> design flow – analyze once and reuse timing models

Source: http://www.cantechletter.com/2014/10/geeks-reading-list-week-october-24th-2014/ Source: http://wccftech.com/ibm-power8-processor-architecture-detailed/

Motivation of Macro Modeling

Performance

Full-chip timing analysis can take days to complete – billions of transistors/gates

Observation: Design comprised of many of the same smaller subdesigns

Solution: <u>Hierarchical</u> and <u>parallel</u> design flow – analyze once and reuse timing models

TAU 2016 Contest: Build on the Past

Develop a timing macro modeler with reference timer Golden Timer: OpenTimer – top performer of TAU 2015 Contest

	PATMOS'2011	🝚 TAU 2013	TAU 2014	TAU 2015
Delay and Output Slew Calculation	<	<		>
Separate Rise/Fall Transitions	~	<		~
Block / Gate-level Capabilities	<	<		~
Path-level Capabilities (CPPR) [†]			~	<
Statistical / Multi-corner Capabilities		<		
Incremental Capabilities				~
Industry-standard Formats (.lib, .v, .spef)				~

CPPR: process of removing inherent but artificial pessimism from timing tests and paths

Model Size/Performance vs. Accuracy

Timing Model Creation and Usage

Timing Query	Out-of-Context Timing	In-Context Timi	ng
report_slack -pin inp1	-15.25	-15.47	acceptable
report_slack -pin out	-20.13	-20.31	threshold
report_slack -pin inp2	-10.64	-13.91	Pessimistic, usage dependent
• • •	• • •	• • •	

Evaluation based accuracy and performance – both generation and usage

TAU 2016 Contest: target sign-off models (<u>high accuracy</u>),

but strongly consider intermediate usage, e.g., optimization where less accuracy is required

Accuracy Evaluation

TAU 2016 Contest Infrastructure

<u>Contest Scope</u>: only hold, setup, RAT tests; no latches (flush segments); single-source clock tree

*using OpenTimer

Benchmarks: Binary Development

11 based on TAU 2015 Phase 1 benchmarks (3K – 100K gates)
7 based on TAU 2015 Phase 2 benchmarks (1K – 150K gates)
7 based on TAU 2015 Evaluation benchmarks (160K – 1.6M gates)

Design	Number of:					
	PIs	POs	Gates	Nets		
ac97_ctrl	84	48	14.3K	14.4K		
aes_core	260	129	22.9K	23.2K		
des_perf	235	64	105.4 K	-106.5 K		
mem_ctrl	115	152	10.5K	10.7K		
pci_bridge32	162	207	19.1K	19.3K		
systemcaes	260	129	6.5K	6.8K		
systemcdes	132	65	3.4K	3.6K		
tv80	14	32	5.3K	5.3K		
usb_funct	128	121	15.7K	15.9K		
vga_lcd	89	109	139.5K	139.6K		
wb_dma	217	215	4.2K	4.4K		
cordic_ispd	34	64	45.4K	45.4K		
des_perf_ispd	234	140	138.9K	-139.1 K		
edit_dist_ispd	2.6K	12	147.6K	150.2K		
fft_ispd	1.0K	2.0K	38.2K	39.2K		
matrix_mult_ispd	3.2K	1.6K	155.3K	167.2 K		
pci_bridge_32_ispd	160	201	40.8K	41.0K		
usb_phy_ispd	15	19	923	938		
b19_iccad	22	25	255.3K	255.3K		
mgc_edit_dist_iccad	2.6K	12	161.7K	164.2K		
mgc_matrix_mult_iccad	3.2K	1.6K	171.3K	174.5K		
vga_lcd_iccad	85	99	259.1K	259.1K		
netcard_iccad	1.8K	10	1496.0K	1497.8K		
leon2_iccad	615	85	1616.4 K	1517.0K		
leon3mp_iccad	254	79	1247.7K	1248.0K		

Benchmarks: Evaluation

10 based on TAU 2015 Phase 1 comb. benchmarks (0.2K – 1.7K gates)
9 based on TAU 2015 Phase 1 seq. benchmarks (0.1K – 1K gates)
6 based on TAU 2015 Phase 2 and Evaluation benchmarks (8.2K – 1.9M gates)

Design	Number of:					
	PIs	POs	Gates	Nets		
c432_eval	36	7	0.2K	0.2K		
c499_eval	41	32	0.2K	0.2K		
c880_eval	60	26	0.3K	0.3K		
c1355_eval	41	32	0.2K	0.2K		
c1908_eval	33	25	0.3K	0.3K		
c2670_eval	157	63	0.5K	0.7K		
c3540_eval	50	22	0.9K	0.9K		
c5315_eval	178	132	1.3K	1.5K		
c6288_eval	32	32	1.7K	1.7K		
c7552.eval	206	107	1.5K	1.7K		
s27_eval	7	1	<0.1K	< 0.1 K		
s344_eval	11	11	0.2K	0.2K		
s349_eval	11	11	0.2K	0.2K		
s386_eval	9	7	0.2K	0.2K		
s400_eval	5	6	0.3K	0.3K		
s510_eval	21	7	0.4K	0.4K		
s526_eval	5	6	0.4 K	0.4K		
s1196_eval	16	14	0.8K	0.8K		
s1494_eval	10	19	0.9K	0.9K		
tv80_eval	14	32	8.2K	8.2K		
mgc_edit_dist_iccad_eval	2.6K	12	222.1K	224.1K		
vga_lcd_iccad_eval	85	- 99	286.4 K	286.5K		
leon3mp_iccad_eval	254	79	1.5M	1.5M		
netcard_iccad_eval	1.8K	10	1.6M	1.6M		
leon2_iccad_eval	615	85	1.9M	1.9M		

Evaluation Metrics

TAU 2016 Contestants

ALL NUMBER

	University	Team Name
NS Prexel	Drexel University	Dragon
I	University of Illinois at Urbana-Champaign	LibAbs
M	University of Minnesota, Twin Cities	
	University of Thessaly	too_fast_too_accurate
OF TECHNORO	India Institute of Technology, Madras	Darth Consilius
अवम्बति वर्मज	India Institute of Technology, Madras	IITMTimers
	National Chiao Tung University	iTimerM

Contestant Results: Accuracy

Top 2 Teams: Very different generated models

→ 25 designs: Both teams have high accuracy on 21 of them (< 1 ps max difference)

→ Team 1: <u>very consistent</u> on high accuracy

Benchmark	Team 1	Team 2
mgc_edit_dist_eval	0.31	0.51
vga_lcd_iccad_eval	0.43	0.83
leon3_iccad_eval	0.42	30.7
netcard_iccad_eval	0.19	90.9
leon2_iccad_eval	0.24	126.5
Accuracy Avorago (all)	1 00	0.04
Accuracy Average (all)	1.00	0.34

Contestant Results: Runtime (s)

Top 2 Teams: Very different generated models

→ Team 1 has better generation time

→ Team 2 has better in-context usage runtime (preferred)

		Generation		Usage	
			$\overline{}$		
Benchmark	Original	Team 1	Team 2	Team 1	Team 2
mgc_edit_dist_eval	8	64	112	19	20
vga_lcd_iccad_eval	10	79	107	24	16
leon3_iccad_eval	64	437	364	143	1
netcard_iccad_eval	69	473	996	148	67
leon2_iccad_eval	77	552	1125	182	144
Runtime Average (all)	1x	7x	12x	2x	1.05x

Contestant Results: Memory (GB)

Top 2 Teams: Very different generated models

→ Team 1 better memory for larger benchmarks; Team 2 better for smaller

→ Team 1 and 2 relatively same memory during in-context usage

		Generation		Usage	
Benchmark	Original	Team 1	Team 2	Team 1	Team 2
mgc_edit_dist_eval	1.9	2.7	4.5	3.7	5
vga_lcd_iccad_eval	2.35	3.3	5	4.3	4
leon3_iccad_eval	11	16.7	18.6	23.1	0.6
netcard_iccad_eval	12.7	18.6	29.4	23.6	16
leon2_iccad_eval	14.2	22	36.3	30.1	34.4
Memory Average (all)	1x	1.2 x	0.5x	0.85x	0.8x

Contestant Results: Model Size

not considered during evaluation

Top 2 Teams: Very different generated models

└→ Team 1: better accuracy, fast generation runtime

→ Team 2: faster usage runtime, better generation memory

Gates + Nets

Needs accuracy fix

Internal Pins

	(estimate)	\sim			
Benchmark	Original	Team 1	Team 2	Team 1	Team 2
mgc_edit_dist_eval	446K	400K	178K	300K	62K
vga_lcd_iccad_eval	570K	500K	150K	350K	51K
leon3_iccad_eval	3M	3M	8K	2M	3К
netcard_iccad_eval	3.2M	3.1M	675K	2M	267K
leon2_iccad_eval	3.8M	3.8M	1.3M	2M	430K
Model Size Average (all)	1x	1.27 x	0.72x]	
Model Size Average (seq)	1x	1.08x	0.35x]	

Timing Arcs

Contest places highest emphasis on accuracy (target sign-off timing) 17

Acknowledgments

Song Chen Contest Committee Member

Xin Zhao Contest Committee Member

Xi Chen Contest Committee Member

Debjit Sinha Workshop General Chair

Qiuyang Wu Tsung-Wei Huang Workshop Technical Chair

OpenTimer Support

The TAU 2016 Contestants

This contest would not have been successful without your hard work and dedication

Timing Contest on Macro Modeling

Honorable Mention

Presented to

Pei-Yu Lee, Ting-You Yang, Wei-Chun Chang, Ya-Chu Chang, and Iris Hui-Ru Jiang

For

iTimerM

National Chiao Tung University, Taiwan

Debjit Sinha General Chair *Qiuyang Wu* Technical Chair Jin Hu Contest Chair

Timing Contest on Macro Modeling

Contest Winner

Presented to

Tin-Yin Lai, Tsung-Wei Huang, and Martin D. F. Wong

For

LibAbs

University of Illinois at Urbana-Champaign, USA

Debjit Sinha General Chair *Qiuyang Wu* Technical Chair *Jin Hu* Contest Chair

Looking Forward to 2017 and Beyond

Macro Modeling Reflections

Accuracy results are very impressive!

Learning experience for both contestants and organizers for Round 2:

- → Focus on different evaluation metrics (e.g., less emphasis on accuracy)
- └→Consider more constraints (e.g., performance) while maintaining accuracy
- Better understanding about different implementations and approaches

→ Further study tradeoffs between accuracy and performance

- LibAbs and iTimerM and industry approaches significantly different
- → Different evaluation "grades" (potentially vs. industry results)

TAU 2017 Contest Plans

- \rightarrow Different timeline to overlap with a semester or quarter
- → More coordination with universities (e.g., integrate into coursework)
- →More realistic feedback process for debugging / improving tools

If you have ideas, come talk to us!

Backup