ParallelClosure: A Parallel Design
Optimizer for Timing Closure

Yi-Shan Lu?!, Wenmian Hua?, Rajit Manohar?, Keshav Pingalil

lUniversity of Texas at Austin, %?Yale University

March 22", 2019 at TAU 2019 Workshop

1. N.V.Shenoy, R. K. Brayton, A. L. Sangiovanni-Vincentelli.
“Minimum padding to satisfy short path constraints,” in ICCAD’93.

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09.

K. Pingali et al. “The TAO of parallelism in algorithms,” in PLDI'11.

4. D.Nguyen, A. Lenharth, K. Pingali. “A lightweight infrastructure
for graph analytics,” in SOSP’13.

w

ParallelClosure

* Our design optimizer for TAU 2019 contest

* Design optimizations considered
 Buffer insertion for fixing hold time violations 1]
* Gate sizing by slew targeting 12! for minimizing area, leakage power & clock
period
 All algorithms are generalized for multi-corner, multi-mode (MCMM)
optimizations

 Parallelization of static timing analysis (STA) & gate sizing
* Parallelism analyses using the operator formulation [3!
* Parallel implementation using the shared-memory Galois framework [4]

Outline

* Optimization flow — the algorithms
 Parallelization — boosting tool runtime
* Limitation

* Conclusions

1. N.V.Shenoy, R. K. Brayton, A. L. Sangiovanni-Vincentelli.
“Minimum padding to satisfy short path constraints,” in ICCAD’93.

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09.

L;‘ Lﬁ .sdc lib JJ
\

-

ParallelClosure

Buffer insertion
for removing hold
time violations [

Buffer insertion Erits il by

slew targeting [2

for removing max.
cap. violations

/\
~ N
optimized optimized ECOs
V .spef

\

ParallelClosure
Buffer insertion for

Buffer insertion for

removing max. cap.
violations

removing hold time > [Gate sizing by slew targeting [2]1

violations 1!
J

\
* We generalize the approach in the following paper to MCMM:

[1] N. V. Shenoy, R. K. Brayton, A. L. Sangiovanni-Vincentelli.
“Minimum padding to satisfy short path constraints,” in ICCAD’93.
(UC Berkeley CAD group)

ParallelClosure

Buffer insertion for removing jl> Buffer insertion for removing jl> Gate sizing by slew
max. cap. violations hold time violations [*! targeting 12!

-
* Gate sizing in multi-mode optimization

On critical paths Upsize Downsize

Not on critical paths Downsize Upsize

* Each gate output has a slew target per combination of (corner, mode)
» Use slew targets (slewt) to guide the sizing process

Sizing operation | Slew target

Upsize Decrease

Downsize Increase

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09.

ParallelClosure
Buffer insertion for removing jl> Buffer insertion for removing Gate sizing by slew
max. cap. violations hold time violations [*! targeting 12!

Gate sizing by slew targeting (modified from [2])

Initialize Gate to cell Revert

slewt assignment state

k better /

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09.

Gate sizing by slew targeting (modified from [2])

Initialize Gate to cell
slewt assignment

_ better

* Initialize slew targets as slews from STA

* Update slew targets s more e
* Globally critical: slack(p) < 0 critical thanp | P

* Locally critical: whether p is on a critical path -

* Adjust the slew targets for p based on modes & p’s criticality q D
_ |
Globally & locally critical Decrease Increase critli)cljl ZSS p’
Otherwise Increase Decrease

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09.

What values to update slew targets?
7.581710 30.326900

1.23599 3.33809 5.59725 8.60523 14.8575 27.5164 52.8765 103.604
4.43724 3.33727 5.59699 8.60578 14.8576 27.5188 52.8775 103.599
15.6743 3.40246 5.62543 8.61689 14.8582 27.5170 52.8787 103.599
37.1331 4.36023 6.10464 8.84317 14.9465 27.5247 52.8726 103.605
70.5649 5.85455 7.27833 9.43026 15.0988 27.6409 52.9322 103.603
117.474 7.61897 9.14083 10.8314 15.5462 27.6912 53.0238 103.669
179.199 9.58764 11.3565 13.0249 16.7347 27.8716 53.0513 103.775

Output rising slew for BUF_X1, Nangate 45 nm, typical corner

0.365616 | 3.786090 | 7.572190 | 15.144400 | 30.288800 | 60.577500 m

1.23599 3.10917 5.67693 8.71288 14.9785 27.6350 52.9690 103.657
4.43724 3.10875 5.67786 8.71402 14.9788 27.6339 52.9719 103.660
15.6743 3.20354 5.70984 8.72471 14.9811 27.6310 52.9744 103.651
37.1331 4.20264 6.15463 8.94062 15.0761 27.6468 52.9670 103.666
70.5649 5.70174 7.27713 9.47332 15.2076 27.7634 53.0379 103.659
117.474 7.47026 9.13720 10.8172 15.6132 27.8134 53.1232 103.735
179.199 9.44195 11.3787 12.9969 16.7387 27.9813 53.1620 103.831

Output rising slew for BUF_X2, Nangate 45 nm, typical corner

* Slew possibilities
* Values by table lookup into the slew
table w/ current slew & different cap.

e Upper bound (ub):
cap. = max cap. of the pin

e Lower bound (/b): cap.=0
 Values considered: Ib*(ub/Ib)*(n/k)

* |n ParallelClosure, k = 20;
n=0,1,3,5,8,11, 15, 20

* Update slew targets of pin p based
on

* Setup/hold time mode
e p’s criticality & previous slew targets

* No max slew violation by
construction

o

STA

Initialize
slewt

Gate sizing by slew targeting (modified from [2])

better)

* Order of sizing

* Slew estimation: see [2] for details

2.

* Want to fix fanout gates of g before sizing g
e Output load matters more than input slew

* Reverse topological order for gates
* Cut cycles of gates at edges to register data inputs

S. Held. “Gate sizing for large cell-based designs,” in DATE’09.

How to select cells for gates?

m For a given corner cnr Across corners

Setup time The smallest size that satisfies all slew targets size;(g) = max{sizeg .n,-(9)}
Venr ’

Hold time The largest size that satisfies all slew targets size,(g) = min{sizep, cnr-(9)}
Venr ’

* If size (g) < size,(g), assign g to the cell of size size (g)
* Reduce area & leakage power

* If size (g) > size,(g), assign g to the cell of size size,(g)
* Honor hold time constraints while limiting the impact to setup time

11

Gate sizing by slew targeting (modified from [2])

Initialize Gate to cell
STA .
slewt assignment
_ better

* The new cell assignment (state) is better if
* The worst negative slack improves for all corners and modes; or

* The area is reduced w/o the following metrics significantly worsened in any
corner and mode:
* Worst negative slack
* Average total negative slack over all path endpoints, e.g., register data inputs

2. S.Held. “Gate sizing for large cell-based designs,” in DATE’09.

Outline

* Optimization flow — the algorithms
 Parallelization — boosting tool runtime
* Limitation

* Conclusions

13

Parallelization w/ operator formulation 3!

Active elements
* Nodes/edges/subgraphs where computation is needed

Operator
 Computation at active elements
* Neighborhood: set of nodes/edges read/written by the update
* Morph operators may change graph topology
* Label-computation operators only update node/edge labels

Schedules
* The ordering to apply operators on active elements
* May be constrained for correctness
* Some ordering may perform better than the others

Parallelism
. Disjoint updates O . neighborhood

* Read-only operators
o : active node

w

K. Pingali et al. “The TAO of parallelism in algorithms,” in PLDI’11.

14

Shared-memory Galois: A C++ library for
operator formulation of algorithms *

Features of Galois Successes in EDA
* Parallel data structures * FPGA routing

* Graphs, bags, etc. [Moctar & Brisk, DAC 2014]
* Parallel loops over active elements « pG rewriting

» for_each, do_all, etc. [Possani et al., ICCAD 2018]

e Support for
* Load balancing
* Scheduling
e Dynamic work
* Transactional execution

* Timing closure
[Lu et al., TAU 2019 contest]

4. D.Nguyen, A. Lenharth, K. Pingali. “A lightweight infrastructure for graph analytics”, in SOSP’13.

How to write a timer in Galois Core | LOC Loc

functionality | in total | for parallelization

#include “TimingGraph.h” void initForward(TimingGraph& g, GNodeBag& bag)
// other header includes { STA 391 35(8-91%)
bag.clear();
using GNode = TimingGraph::GraphNode; galois::do_all(Gate sizing 639 97 (15.18%)
using GNodeBag = galois::InsertBag<GNode>; galois::iterate(g),
[&] (GNode n) { Buffering 439 35(7.99%)
void propagateForward(TimingGraph& g) { auto inDeg = inDegree(n);
GNodeBag fFront; g.getData(n).dep = inDeg;
initForward(g, fFront); if (!inDeg) {
computeForward(g, fFront); bag.push_back(n); void computeForward(TimingGraph& g, GNodeBag& bag) {
} ¥ galois::for_each(
¥ galois::iterate(bag),
// other codes for propagateBackward » galois::loopname(“InitForward") [&] (GNode n, auto& ctx) {
// & reportCriticalPath , galois::steal() computeForwardOperator(n, ctx.getPerIterAlloc());
)
int main(int argc, char** argv) { } // schedule an outgoing neighbor when required
galois: :SharedMemSys G; for (auto e: g.edges(n, unprotected)) {
auto succ = g.getEdgeDst(e);
// instantiate a timing graph auto& succData = g.getData(succ);
TimingGraph g; if (! __sync_sub_and fetch(&(succData.dep), 1)) {
// construct g using cell libraries ctx.push(succ);
// & Verilog netlist }
// initialize g using SDC commands }
}
propagateForward(g); , galois::loopname("ComputeForward")
propagateBackward(g); , galois::per_iter_alloc()
reportCriticalPath(g); , galois::no_conflicts()
return 0;)
} }

STA Speedup over OpenTimer 2.0 for Best-time Runs

25
20
o
> 15
©
8
o 10
(7p]
5 II II I I
0
ac97_ctrl aes_core des_perf vga_| des_perf*10 vga lcd*10 geomean
(large)
benchmark
mG lv mG_dag
. . Best Runtime Speedup
Circuit # Gates # Nets # Pins Sequential Runtime (and # Threads Used) over OT
or Gly Gdag or Glo Gdag Glo Gdag
ac97_ctrl 14,131 14,407 40,238 390.0 114.0 101.3 312.0 (21) 62.3(7) 353(7)| 501 883
aes_core 22,938 23,199 66,221 623.3 226.3 196.7 4933 (7) 90.3 (7) 53.0(7) | 546 931
des_perf 105371 106,532 295808 | 3.453.0 1,173.3 956.3 | 2,762.7 (14) 266.7 (14) 155.0(14) | 10.36 17.82
vga_led 139,529 139,631 380,730 | 4,700.3 1,4957 12323 | 3,660.7(28) 3193(14) 187.7(14) | 11.46 1951
des_perf*10 | 1,053,710 1,065,311 2,958,071 | 34,853.0 12,765.3 10,441.7 | 29,923.3 (14) 2,222.0 (14) 1,366.7 (14) | 13.47 21.90
| vga_lcd*10 | 1,395290 1,396,301 3,807,291 | 49,2843 16,0637 13,0840 | 31,2127 (35) 2768.7 (14) 17087 (14) | 11.27 1827

17

Outline

* Optimization flow — the algorithms
 Parallelization — boosting tool runtime
* Limitation

* Conclusions

5. E.G. Friedman, “Clock distribution networks in synchronous digital
integrated circuits,” in Proc. of the IEEE, 89(5): pp. 665—692, 2001.
L . . . 6. C.J. Alpert et al. “Buffered steiner trees for difficult instances,” in
| m I tat I O n IEEE/ACM TCAD, 21(1): pp. 3—14, 2002.
7. L. P.P.P.van Ginneken. “Buffer placement in distributed rc-tree
networks for minimal elmore delay,” in ISCS’90.

Quality of results Performance of ParallelClosure
* Lots O'_f buffers are inserted when ° Buffer insertion is purely
there is a large number of paths w/ .
hold-time violations sequentia
* Clock network synthesis > may help e Consistency of name-object
* Not considering net topology and mappings
optimal buffer insertion for a net * The algorithm for fixing hold-time
* Topology: C-tree algorithm ° violations has no parallelism

e Optimal buffer insertion:
van Ginneken’s algorithm []

* Need more parameter tuning
* E.g., convergence criteria of sizing

Outline

* Optimization flow — the algorithms
 Parallelization — boosting tool runtime
* Limitation

* Conclusions

1. N.V.Shenoy, R. K. Brayton, A. L. Sangiovanni-Vincentelli.
“Minimum padding to satisfy short path constraints,” in ICCAD’93.

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09.

K. Pingali et al. “The TAO of parallelism in algorithms,” in PLDI'11.

4. D.Nguyen, A. Lenharth, K. Pingali. “A lightweight infrastructure
for graph analytics,” in SOSP’13.

w

Conclusions

* ParallelClosure is effective for designs w/ a small # hold-time
violations
 Buffer insertion for fixing hold time violations 1!

 Gate sizing by slew targeting 2! for minimizing area, leakage power & clock
period

 All algorithms are generalized for multi-corner, multi-mode (MCMM)
optimizations

* ParallelClosure is efficient through parallelizing STA & gate sizing

* Parallelism analyses using the operator formulation [3!
* Parallel implementation using the shared-memory Galois framework 4

Thanks!

Questions? Comments?

