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ParallelClosure 

• Our design optimizer for TAU 2019 contest 

• Design optimizations considered 
• Buffer insertion for fixing hold time violations [1] 

• Gate sizing by slew targeting [2] for minimizing area, leakage power & clock 
period 

• All algorithms are generalized for multi-corner, multi-mode (MCMM) 
optimizations 

• Parallelization of static timing analysis (STA) & gate sizing 
• Parallelism analyses using the operator formulation [3] 

• Parallel implementation using the shared-memory Galois framework [4] 

1. N. V. Shenoy, R. K. Brayton, A. L. Sangiovanni-Vincentelli. 
“Minimum padding to satisfy short path constraints,” in ICCAD’93. 

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09. 
3. K. Pingali et al. “The TAO of parallelism in algorithms,” in PLDI’11. 
4. D. Nguyen, A. Lenharth, K. Pingali. “A lightweight infrastructure 

for graph analytics,” in SOSP’13. 
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Outline 

• Optimization flow – the algorithms 

• Parallelization – boosting tool runtime 

• Limitation 

• Conclusions 

3 



4 

ParallelClosure 

Buffer insertion 
for removing max. 

cap. violations 

Buffer insertion 
for removing hold 
time violations [1] 

Gate sizing by 
slew targeting [2] 
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2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09. 
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• We generalize the approach in the following paper to MCMM: 
 
[1] N. V. Shenoy, R. K. Brayton, A. L. Sangiovanni-Vincentelli.  
“Minimum padding to satisfy short path constraints,” in ICCAD’93. 
(UC Berkeley CAD group) 

ParallelClosure 

Buffer insertion for 
removing max. cap. 

violations 

Buffer insertion for 
removing hold time 

violations [1] 

Gate sizing by slew targeting [2] 



6 

• Gate sizing in multi-mode optimization 

 

 

• Each gate output has a slew target per combination of (corner, mode) 

• Use slew targets (slewt) to guide the sizing process 

 

ParallelClosure 

Buffer insertion for removing 
max. cap. violations 

Buffer insertion for removing 
hold time violations [1] 

Gate sizing by slew 
targeting [2] 

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09. 

Gate position Setup time Hold time 

On critical paths Upsize Downsize 

Not on critical paths Downsize Upsize 

Sizing operation Slew target 

Upsize Decrease 

Downsize Increase 
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2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09. 

ParallelClosure 

Buffer insertion for removing 
max. cap. violations 

Buffer insertion for removing 
hold time violations [1] 

Gate sizing by slew 
targeting [2] 

Gate sizing by slew targeting (modified from [2]) 

STA 
Initialize 

slewt 
Keep 
state 

Update 
slewt 

Gate to cell 
assignment 

STA 
Score 
state 

Revert 
state 

better 

worse 
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• Initialize slew targets as slews from STA 

• Update slew targets 
• Globally critical: slack(p) < 0 

• Locally critical: whether p is on a critical path 

• Adjust the slew targets for p based on modes & p’s criticality 

Gate sizing by slew targeting (modified from [2]) 

STA 
Initialize 

slewt 
Keep 
state 

Update 
slewt 

Gate to cell 
assignment 

STA 
Score 
state 

Revert 
state 

better 

worse 

g’ 

g 

p’ 

q p 

Gate position Setup time slewt Hold time slewt 

Globally & locally critical Decrease Increase 

Otherwise Increase Decrease 

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09. 

p is as 
critical as p’ 

p’ is more 
critical than p 



What values to update slew targets? 
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• Slew possibilities 
• Values by table lookup into the slew 

table w/ current slew & different cap. 
• Upper bound (ub):  

cap. = max cap. of the pin 
• Lower bound (lb): cap. = 0 
• Values considered: lb*(ub/lb)^(n/k) 

• In ParallelClosure, k = 20;  
n = 0, 1, 3, 5, 8, 11, 15, 20 

• Update slew targets of pin p based 
on 
• Setup/hold time mode 
• p’s criticality & previous slew targets 

• No max slew violation by 
construction 

T\C 0.365616 1.895430  3.790860  7.581710  15.163400  30.326900  60.653700 

1.23599 3.33809  5.59725 8.60523 14.8575  27.5164 52.8765  103.604 

4.43724 3.33727  5.59699  8.60578  14.8576  27.5188  52.8775  103.599 

15.6743 3.40246  5.62543  8.61689  14.8582  27.5170  52.8787  103.599 

37.1331 4.36023  6.10464  8.84317  14.9465  27.5247  52.8726  103.605 

70.5649 5.85455  7.27833  9.43026  15.0988  27.6409  52.9322  103.603 

117.474 7.61897  9.14083  10.8314  15.5462  27.6912  53.0238  103.669 

179.199 9.58764  11.3565  13.0249  16.7347  27.8716  53.0513  103.775 

T\C 0.365616 3.786090  7.572190  15.144400  30.288800  60.577500  121.155000 

1.23599 3.10917 5.67693  8.71288  14.9785  27.6350  52.9690  103.657 

4.43724 3.10875 5.67786  8.71402  14.9788  27.6339  52.9719  103.660 

15.6743 3.20354 5.70984  8.72471  14.9811  27.6310  52.9744  103.651 

37.1331 4.20264 6.15463  8.94062  15.0761  27.6468  52.9670 103.666 

70.5649 5.70174 7.27713  9.47332  15.2076  27.7634  53.0379  103.659 

117.474 7.47026 9.13720 10.8172  15.6132  27.8134  53.1232  103.735 

179.199 9.44195 11.3787  12.9969  16.7387  27.9813  53.1620 103.831 

Output rising slew for BUF_X1, Nangate 45 nm, typical corner 

Output rising slew for BUF_X2, Nangate 45 nm, typical corner 
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• Order of sizing 
• Want to fix fanout gates of g before sizing g 

• Output load matters more than input slew 

• Reverse topological order for gates 
• Cut cycles of gates at edges to register data inputs 

• Slew estimation: see [2] for details 

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09. 

g’ 

g 

p’ 

q 
p 

Gate sizing by slew targeting (modified from [2]) 
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Revert 
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better 
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How to select cells for gates? 

• If sizes(g) ≤ sizeh(g), assign g to the cell of size sizes(g) 
• Reduce area & leakage power 

• If sizes(g) > sizeh(g), assign g to the cell of size sizeh(g) 
• Honor hold time constraints while limiting the impact to setup time 
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Mode For a given corner cnr Across corners 

Setup time The smallest size that satisfies all slew targets 𝑠𝑖𝑧𝑒𝑠 𝑔 = max
∀𝑐𝑛𝑟

𝑠𝑖𝑧𝑒𝑠,𝑐𝑛𝑟 𝑔  

Hold time The largest size that satisfies all slew targets 𝑠𝑖𝑧𝑒ℎ 𝑔 = min
∀𝑐𝑛𝑟

𝑠𝑖𝑧𝑒ℎ,𝑐𝑛𝑟 𝑔  
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• The new cell assignment (state) is better if 
• The worst negative slack improves for all corners and modes; or 

• The area is reduced w/o the following metrics significantly worsened in any 
corner and mode: 
• Worst negative slack 

• Average total negative slack over all path endpoints, e.g., register data inputs 

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09. 

Gate sizing by slew targeting (modified from [2]) 
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Outline 

• Optimization flow – the algorithms 

• Parallelization – boosting tool runtime 

• Limitation 

• Conclusions 
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Parallelization w/ operator formulation [3] 

• Active elements 
• Nodes/edges/subgraphs where computation is needed 

• Operator 
• Computation at active elements 
• Neighborhood: set of nodes/edges read/written by the update 
• Morph operators may change graph topology 
• Label-computation operators only update node/edge labels 

• Schedules 
• The ordering to apply operators on active elements 
• May be constrained for correctness 
• Some ordering may perform better than the others 

• Parallelism 
• Disjoint updates 
• Read-only operators 
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d 
b 

a 

c 

: neighborhood 

v : active node 
3. K. Pingali et al. “The TAO of parallelism in algorithms,” in PLDI’11. 



Shared-memory Galois: A C++ library for 
operator formulation of algorithms [4] 

Features of Galois 
• Parallel data structures  

• Graphs, bags, etc. 

• Parallel loops over active elements 
• for_each, do_all, etc. 

• Support for  
• Load balancing 
• Scheduling 
• Dynamic work 
• Transactional execution 

Successes in EDA 

• FPGA routing  
[Moctar & Brisk, DAC 2014] 

• AIG rewriting  
[Possani et al., ICCAD 2018] 

• Timing closure 
[Lu et al., TAU 2019 contest] 
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4. D. Nguyen, A. Lenharth, K. Pingali. “A lightweight infrastructure for graph analytics”, in SOSP’13. 



How to write a timer in Galois 
#include “TimingGraph.h” 
// other header includes 
 
using GNode = TimingGraph::GraphNode; 
using GNodeBag = galois::InsertBag<GNode>; 
 
void propagateForward(TimingGraph& g) { 
  GNodeBag fFront; 
  initForward(g, fFront); 
  computeForward(g, fFront); 
} 
 
// other codes for propagateBackward 
//   & reportCriticalPath 
 
int main(int argc, char** argv) { 
  galois::SharedMemSys G; 
 
  // instantiate a timing graph 
  TimingGraph g; 
  // construct g using cell libraries  
  //   & Verilog netlist 
  // initialize g using SDC commands 
 
  propagateForward(g); 
  propagateBackward(g); 
  reportCriticalPath(g); 
  return 0; 
} 

void initForward(TimingGraph& g, GNodeBag& bag) 
{ 
  bag.clear(); 
  galois::do_all( 
    galois::iterate(g), 
    [&] (GNode n) { 
      auto inDeg = inDegree(n); 
      g.getData(n).dep = inDeg; 
      if (!inDeg) { 
        bag.push_back(n); 
      } 
    } 
    , galois::loopname(“InitForward") 
    , galois::steal() 
  ); 
} 

void computeForward(TimingGraph& g, GNodeBag& bag) { 
  galois::for_each( 
    galois::iterate(bag), 
    [&] (GNode n, auto& ctx) { 
      computeForwardOperator(n, ctx.getPerIterAlloc()); 
 
      // schedule an outgoing neighbor when required 
      for (auto e: g.edges(n, unprotected)) { 
        auto succ = g.getEdgeDst(e); 
        auto& succData = g.getData(succ); 
        if (!__sync_sub_and_fetch(&(succData.dep), 1)) { 
          ctx.push(succ); 
        } 
      } 
    } 
    , galois::loopname("ComputeForward") 
    , galois::per_iter_alloc() 
    , galois::no_conflicts() 
  ); 
} 

Core 
functionality 

LOC  
in total 

LOC  
for parallelization 

STA 391 35 (  8.91%) 

Gate sizing 639 97 (15.18%) 

Buffering 439 35 (  7.99%) 
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Outline 

• Optimization flow – the algorithms 

• Parallelization – boosting tool runtime 

• Limitation 

• Conclusions 
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Limitation 

Quality of results 

• Lots of buffers are inserted when 
there is a large number of paths w/ 
hold-time violations 
• Clock network synthesis [5] may help 

• Not considering net topology and 
optimal buffer insertion for a net 
• Topology: C-tree algorithm [6] 
• Optimal buffer insertion:  

van Ginneken’s algorithm [7] 

• Need more parameter tuning 
• E.g., convergence criteria of sizing 

Performance of ParallelClosure 

• Buffer insertion is purely 
sequential 
• Consistency of name-object 

mappings 

• The algorithm for fixing hold-time 
violations has no parallelism 
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5. E. G. Friedman, “Clock distribution networks in synchronous digital 
integrated circuits,” in Proc. of the IEEE, 89(5): pp. 665–692, 2001. 

6. C. J. Alpert et al. “Buffered steiner trees for difficult instances,” in 
IEEE/ACM TCAD, 21(1): pp. 3–14, 2002. 

7. L. P. P. P. van Ginneken. “Buffer placement in distributed rc-tree 
networks for minimal elmore delay,” in ISCS’90. 



Outline 

• Optimization flow – the algorithms 

• Parallelization – boosting tool runtime 

• Limitation 

• Conclusions 
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Conclusions 

• ParallelClosure is effective for designs w/ a small # hold-time 
violations 
• Buffer insertion for fixing hold time violations [1] 

• Gate sizing by slew targeting [2] for minimizing area, leakage power & clock 
period 

• All algorithms are generalized for multi-corner, multi-mode (MCMM) 
optimizations 

• ParallelClosure is efficient through parallelizing STA & gate sizing 
• Parallelism analyses using the operator formulation [3] 

• Parallel implementation using the shared-memory Galois framework [4] 
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Thanks! 
Questions? Comments? 
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