
ParallelClosure: A Parallel Design
Optimizer for Timing Closure

Yi-Shan Lu1, Wenmian Hua2, Rajit Manohar2, Keshav Pingali1

1University of Texas at Austin, 2Yale University

March 22nd, 2019 at TAU 2019 Workshop

1

ParallelClosure

• Our design optimizer for TAU 2019 contest

• Design optimizations considered
• Buffer insertion for fixing hold time violations [1]

• Gate sizing by slew targeting [2] for minimizing area, leakage power & clock
period

• All algorithms are generalized for multi-corner, multi-mode (MCMM)
optimizations

• Parallelization of static timing analysis (STA) & gate sizing
• Parallelism analyses using the operator formulation [3]

• Parallel implementation using the shared-memory Galois framework [4]

1. N. V. Shenoy, R. K. Brayton, A. L. Sangiovanni-Vincentelli.
“Minimum padding to satisfy short path constraints,” in ICCAD’93.

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09.
3. K. Pingali et al. “The TAO of parallelism in algorithms,” in PLDI’11.
4. D. Nguyen, A. Lenharth, K. Pingali. “A lightweight infrastructure

for graph analytics,” in SOSP’13.

2

Outline

• Optimization flow – the algorithms

• Parallelization – boosting tool runtime

• Limitation

• Conclusions

3

4

ParallelClosure

Buffer insertion
for removing max.

cap. violations

Buffer insertion
for removing hold
time violations [1]

Gate sizing by
slew targeting [2]

.v .spef .sdc .lib

1. N. V. Shenoy, R. K. Brayton, A. L. Sangiovanni-Vincentelli.
“Minimum padding to satisfy short path constraints,” in ICCAD’93.

optimized
.v

optimized
.spef

ECOs

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09.

5

• We generalize the approach in the following paper to MCMM:

[1] N. V. Shenoy, R. K. Brayton, A. L. Sangiovanni-Vincentelli.
“Minimum padding to satisfy short path constraints,” in ICCAD’93.
(UC Berkeley CAD group)

ParallelClosure

Buffer insertion for
removing max. cap.

violations

Buffer insertion for
removing hold time

violations [1]

Gate sizing by slew targeting [2]

6

• Gate sizing in multi-mode optimization

• Each gate output has a slew target per combination of (corner, mode)

• Use slew targets (slewt) to guide the sizing process

ParallelClosure

Buffer insertion for removing
max. cap. violations

Buffer insertion for removing
hold time violations [1]

Gate sizing by slew
targeting [2]

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09.

Gate position Setup time Hold time

On critical paths Upsize Downsize

Not on critical paths Downsize Upsize

Sizing operation Slew target

Upsize Decrease

Downsize Increase

7

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09.

ParallelClosure

Buffer insertion for removing
max. cap. violations

Buffer insertion for removing
hold time violations [1]

Gate sizing by slew
targeting [2]

Gate sizing by slew targeting (modified from [2])

STA
Initialize

slewt
Keep
state

Update
slewt

Gate to cell
assignment

STA
Score
state

Revert
state

better

worse

8

• Initialize slew targets as slews from STA

• Update slew targets
• Globally critical: slack(p) < 0

• Locally critical: whether p is on a critical path

• Adjust the slew targets for p based on modes & p’s criticality

Gate sizing by slew targeting (modified from [2])

STA
Initialize

slewt
Keep
state

Update
slewt

Gate to cell
assignment

STA
Score
state

Revert
state

better

worse

g’

g

p’

q p

Gate position Setup time slewt Hold time slewt

Globally & locally critical Decrease Increase

Otherwise Increase Decrease

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09.

p is as
critical as p’

p’ is more
critical than p

What values to update slew targets?

9

• Slew possibilities
• Values by table lookup into the slew

table w/ current slew & different cap.
• Upper bound (ub):

cap. = max cap. of the pin
• Lower bound (lb): cap. = 0
• Values considered: lb*(ub/lb)^(n/k)

• In ParallelClosure, k = 20;
n = 0, 1, 3, 5, 8, 11, 15, 20

• Update slew targets of pin p based
on
• Setup/hold time mode
• p’s criticality & previous slew targets

• No max slew violation by
construction

T\C 0.365616 1.895430 3.790860 7.581710 15.163400 30.326900 60.653700

1.23599 3.33809 5.59725 8.60523 14.8575 27.5164 52.8765 103.604

4.43724 3.33727 5.59699 8.60578 14.8576 27.5188 52.8775 103.599

15.6743 3.40246 5.62543 8.61689 14.8582 27.5170 52.8787 103.599

37.1331 4.36023 6.10464 8.84317 14.9465 27.5247 52.8726 103.605

70.5649 5.85455 7.27833 9.43026 15.0988 27.6409 52.9322 103.603

117.474 7.61897 9.14083 10.8314 15.5462 27.6912 53.0238 103.669

179.199 9.58764 11.3565 13.0249 16.7347 27.8716 53.0513 103.775

T\C 0.365616 3.786090 7.572190 15.144400 30.288800 60.577500 121.155000

1.23599 3.10917 5.67693 8.71288 14.9785 27.6350 52.9690 103.657

4.43724 3.10875 5.67786 8.71402 14.9788 27.6339 52.9719 103.660

15.6743 3.20354 5.70984 8.72471 14.9811 27.6310 52.9744 103.651

37.1331 4.20264 6.15463 8.94062 15.0761 27.6468 52.9670 103.666

70.5649 5.70174 7.27713 9.47332 15.2076 27.7634 53.0379 103.659

117.474 7.47026 9.13720 10.8172 15.6132 27.8134 53.1232 103.735

179.199 9.44195 11.3787 12.9969 16.7387 27.9813 53.1620 103.831

Output rising slew for BUF_X1, Nangate 45 nm, typical corner

Output rising slew for BUF_X2, Nangate 45 nm, typical corner

10

• Order of sizing
• Want to fix fanout gates of g before sizing g

• Output load matters more than input slew

• Reverse topological order for gates
• Cut cycles of gates at edges to register data inputs

• Slew estimation: see [2] for details

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09.

g’

g

p’

q
p

Gate sizing by slew targeting (modified from [2])

STA
Initialize

slewt
Keep
state

Update
slewt

Gate to cell
assignment

STA
Score
state

Revert
state

better

worse

How to select cells for gates?

• If sizes(g) ≤ sizeh(g), assign g to the cell of size sizes(g)
• Reduce area & leakage power

• If sizes(g) > sizeh(g), assign g to the cell of size sizeh(g)
• Honor hold time constraints while limiting the impact to setup time

11

Mode For a given corner cnr Across corners

Setup time The smallest size that satisfies all slew targets 𝑠𝑖𝑧𝑒𝑠 𝑔 = max
∀𝑐𝑛𝑟

𝑠𝑖𝑧𝑒𝑠,𝑐𝑛𝑟 𝑔

Hold time The largest size that satisfies all slew targets 𝑠𝑖𝑧𝑒ℎ 𝑔 = min
∀𝑐𝑛𝑟

𝑠𝑖𝑧𝑒ℎ,𝑐𝑛𝑟 𝑔

12

• The new cell assignment (state) is better if
• The worst negative slack improves for all corners and modes; or

• The area is reduced w/o the following metrics significantly worsened in any
corner and mode:
• Worst negative slack

• Average total negative slack over all path endpoints, e.g., register data inputs

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09.

Gate sizing by slew targeting (modified from [2])

STA
Initialize

slewt
Keep
state

Update
slewt

Gate to cell
assignment

STA
Score
state

Revert
state

better

worse

Outline

• Optimization flow – the algorithms

• Parallelization – boosting tool runtime

• Limitation

• Conclusions

13

Parallelization w/ operator formulation [3]

• Active elements
• Nodes/edges/subgraphs where computation is needed

• Operator
• Computation at active elements
• Neighborhood: set of nodes/edges read/written by the update
• Morph operators may change graph topology
• Label-computation operators only update node/edge labels

• Schedules
• The ordering to apply operators on active elements
• May be constrained for correctness
• Some ordering may perform better than the others

• Parallelism
• Disjoint updates
• Read-only operators

14

d
b

a

c

: neighborhood

v : active node
3. K. Pingali et al. “The TAO of parallelism in algorithms,” in PLDI’11.

Shared-memory Galois: A C++ library for
operator formulation of algorithms [4]

Features of Galois
• Parallel data structures

• Graphs, bags, etc.

• Parallel loops over active elements
• for_each, do_all, etc.

• Support for
• Load balancing
• Scheduling
• Dynamic work
• Transactional execution

Successes in EDA

• FPGA routing
[Moctar & Brisk, DAC 2014]

• AIG rewriting
[Possani et al., ICCAD 2018]

• Timing closure
[Lu et al., TAU 2019 contest]

15

4. D. Nguyen, A. Lenharth, K. Pingali. “A lightweight infrastructure for graph analytics”, in SOSP’13.

How to write a timer in Galois
#include “TimingGraph.h”
// other header includes

using GNode = TimingGraph::GraphNode;
using GNodeBag = galois::InsertBag<GNode>;

void propagateForward(TimingGraph& g) {
 GNodeBag fFront;
 initForward(g, fFront);
 computeForward(g, fFront);
}

// other codes for propagateBackward
// & reportCriticalPath

int main(int argc, char** argv) {
 galois::SharedMemSys G;

 // instantiate a timing graph
 TimingGraph g;
 // construct g using cell libraries
 // & Verilog netlist
 // initialize g using SDC commands

 propagateForward(g);
 propagateBackward(g);
 reportCriticalPath(g);
 return 0;
}

void initForward(TimingGraph& g, GNodeBag& bag)
{
 bag.clear();
 galois::do_all(
 galois::iterate(g),
 [&] (GNode n) {
 auto inDeg = inDegree(n);
 g.getData(n).dep = inDeg;
 if (!inDeg) {
 bag.push_back(n);
 }
 }
 , galois::loopname(“InitForward")
 , galois::steal()
);
}

void computeForward(TimingGraph& g, GNodeBag& bag) {
 galois::for_each(
 galois::iterate(bag),
 [&] (GNode n, auto& ctx) {
 computeForwardOperator(n, ctx.getPerIterAlloc());

 // schedule an outgoing neighbor when required
 for (auto e: g.edges(n, unprotected)) {
 auto succ = g.getEdgeDst(e);
 auto& succData = g.getData(succ);
 if (!__sync_sub_and_fetch(&(succData.dep), 1)) {
 ctx.push(succ);
 }
 }
 }
 , galois::loopname("ComputeForward")
 , galois::per_iter_alloc()
 , galois::no_conflicts()
);
}

Core
functionality

LOC
in total

LOC
for parallelization

STA 391 35 (8.91%)

Gate sizing 639 97 (15.18%)

Buffering 439 35 (7.99%)

17

0

5

10

15

20

25

ac97_ctrl aes_core des_perf vga_lcd des_perf*10 vga_lcd*10 geomean
(large)

sp
ee

d
u

p

benchmark

STA Speedup over OpenTimer 2.0 for Best-time Runs

G_lv G_dag

Outline

• Optimization flow – the algorithms

• Parallelization – boosting tool runtime

• Limitation

• Conclusions

18

Limitation

Quality of results

• Lots of buffers are inserted when
there is a large number of paths w/
hold-time violations
• Clock network synthesis [5] may help

• Not considering net topology and
optimal buffer insertion for a net
• Topology: C-tree algorithm [6]
• Optimal buffer insertion:

van Ginneken’s algorithm [7]

• Need more parameter tuning
• E.g., convergence criteria of sizing

Performance of ParallelClosure

• Buffer insertion is purely
sequential
• Consistency of name-object

mappings

• The algorithm for fixing hold-time
violations has no parallelism

19

5. E. G. Friedman, “Clock distribution networks in synchronous digital
integrated circuits,” in Proc. of the IEEE, 89(5): pp. 665–692, 2001.

6. C. J. Alpert et al. “Buffered steiner trees for difficult instances,” in
IEEE/ACM TCAD, 21(1): pp. 3–14, 2002.

7. L. P. P. P. van Ginneken. “Buffer placement in distributed rc-tree
networks for minimal elmore delay,” in ISCS’90.

Outline

• Optimization flow – the algorithms

• Parallelization – boosting tool runtime

• Limitation

• Conclusions

20

Conclusions

• ParallelClosure is effective for designs w/ a small # hold-time
violations
• Buffer insertion for fixing hold time violations [1]

• Gate sizing by slew targeting [2] for minimizing area, leakage power & clock
period

• All algorithms are generalized for multi-corner, multi-mode (MCMM)
optimizations

• ParallelClosure is efficient through parallelizing STA & gate sizing
• Parallelism analyses using the operator formulation [3]

• Parallel implementation using the shared-memory Galois framework [4]

21

1. N. V. Shenoy, R. K. Brayton, A. L. Sangiovanni-Vincentelli.
“Minimum padding to satisfy short path constraints,” in ICCAD’93.

2. S. Held. “Gate sizing for large cell-based designs,” in DATE’09.
3. K. Pingali et al. “The TAO of parallelism in algorithms,” in PLDI’11.
4. D. Nguyen, A. Lenharth, K. Pingali. “A lightweight infrastructure

for graph analytics,” in SOSP’13.

Thanks!
Questions? Comments?

22

