
Hsien-Han Cheng1, Tung-Wei Lin2, Yu-Cheng Lin2,

Iris Hui-Ru Jiang2 ,Pei-Yu Lee3
1National Chiao Tung University
2National Taiwan University
3Maxeda Technology

TAU2019 Timing Contest

Team: iTimer

2

Problem Formulation

 The Design Optimization Problem
– Given

 Initial circuit netlist (.v)

 RC parasitics (.spef)

 Timing and design constraint file (.sdc)

 Multiple corner liberties (.lib),

– Constraints

 No hold time violations across multiple corners

 No slew or cap violations across multiple corners

– Objectives

 Maximize working frequency

 Minimize leakage

 Minimize area

 Minimize runtime

 Minimize memory

3

Challenges

 Gate sizing is NP-hard

 Multi-corner timing optimization is first considered

 Unbalanced clock tree complicates timing optimization

W. Ning, "Strongly NP-Hard Discrete Gate-Sizing Problems", TCAD, vol. 13, no. 8, pp. 1045-1051, 1994.

4

Algorithm Flow

5

Worst Corner Identification

 The corner which has the slowest cells bounds the

highest operating frequency

 The corner with the most total negative slack (TNS) is

worst corner

 All subsequent optimization steps focus on timing from

worst corner except hold time fixing

6

Max Cap/Slew Fixing

 Gate upsizing or buffer insertion can solve the violations

 Apply the following procedures sequentially unless the

violation is fixed
– Upsize C

– Downsize the fanout cell of C

– Insert buffer after C

– Insert buffer before the fanout cell of C

 Perform cap/slew violation fixing in BFS order first and

then reverse BFS order

7

Clock Tree Optimization

 CLK Buffer Removal
– Remove clock buffers as many as possible in this stage

– Can insert buffers later without inducing too much area overhead

 CLK Buffer Insertion for Hold Time Fixing
– Fix hold time violations in three ways

 Clock tree split point buffer insertion

 Clock tree leaf point buffer insertion

 Data path buffer insertion

8

Setup Time Optimization

 Gate Upsizing
– Sensitivities of gates on top k critical paths are recorded

– The top n gates with the highest sensitivities (defined by Equation

(1)) are upsized

 Useful Skew
– Is applied on the most critical path

– With attention on positive hold time slacks

9

Leakage/Area Recovery

 Segment Dependency Graph (SDG) can estimate the

propagation of setup slacks after downsizing

 With the global view provided by SDG, we can identify

the segments that are less critical and downsize them

without harming worst setup slacks

10

Legalization

 Apply Max Cap/Slew Fixing and Multi-corner Hold Time

Fixing

 Multi-corner Hold Time Fixing
– Iterate all corners

– Insert buffers only on data path

11

Experiment Results (1/2)

 Platform: Intel Xeon 2.6GHz Linux Workstation with

197GB memory and 32 CPUs

w.r.t. zero clock period

|WNS (Setup)| = longest path delay = 1/frequency

12

Experiment Results (2/2)

 usb_function: enormous clock skew

 Clk Tree Opt reduces |WNS (setup)| by 30%
– Origin goal is to solve hold time violation

– The harm of an imbalanced clock tree

13

Conclusion and Future Work

 On average, our flow can decrease worst setup slack by

around 56%, leakage by 48% and area by 39%.

 Experiment results show that our proposed algorithm is

imperative and can gain notable slack improvement in

each stage

 Our future work includes further shortening the runtime

and improving the solution quality.

14

Thank you!

