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Development of Neural Networks

Deep Neural Network
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Rise and Decline of Neural Network

Convolutional Network
(1980s)

10 output units
fully connected

~ 300 links

layer H3

30 hidden units fully connected

~ 6000 links

layer H2
12 x 16=192 , 4
hidden units

40,000 links

g from 12 kernels
~ 5x5x8

layer H1

12 x 64 = 768

hidden units "
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from 12 kernels

256 input units
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Dark period
(1990s)

 Serious problem:
Vanishing gradient

* No benefits observed
by adding more layers

* No high performance
computing devices

Renaissance
(2006 ~ Present)
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Y. Lecun, B. Boser, ]. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D. Jackel. Backpropagation Applied to Handwritten Zip Code

Recognition.1989.

J. Schmidhuber. Deep Learning in Neural Networks: An Overview. arxiv, 2014.

G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks. Science, 2006.



Machine Learning in Academia

Journal articles mentioning NIPS registrations growth
“deep learning” or “deep 2015: 3755, 2016: 6000+
neural networks”

Total Registrations 3755

Deep Learning 3,200
400
350 —®—China 2,400
n —o—USA
g 300
8 ®—England 1,600
£ 250
S —&— Australia
o 200
© —®—Canada
g 800
_g =0 —lapan "
< 1 —®—Germany 4 |
i Sngapom Tutorials Conference Workshops
L —e—South Korea (2,584) (3,262) (3,006)
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Machine Learning in the Market

Technology cycle - from PC, to smartphone, to artificial intelligence?

“Pure Play” Share Price Performance
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What is ASIC?

The Alternative Sustainable and Intelligent Computing
(ASIC) Center is a multi-site, multidisciplinary
consortium that explores research frontiers in emerging
computing platforms for cognitive applications

+ The ASIC Center focuses on designing alternative
computing platforms for cognitive applications, which
perform inefficiently on conventional von Neumann
architectures
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Facts of ASIC

¥,
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Research of ASIC: DNN Acceleration

a

RESEARCH TOPICS

Weight quantization

Compact models

Network compression

Network pruning

Distributed learning

-

J

Representative Industrial Impacts

== 0 Our 1-level quantization method (ASP-DAC’17 and DAC’16) is included in

== the latest SDK of IBM TrueNorth Chip, achieving 6X performance
T improvement and/or 2/3 hardware cost reduction.

(§F) TECHNOLOGY _ _ ,
SULIE SR L Q Our structural pruning technique (NIPS’16)

* is supported by the library of Intel Nervana Neural Network Processors.
inter - is adopted by Intel NLP accelerator.
* is adopted by SF-Technology, achieving 2X performance improvement.

O Our TenGrad technique (NIPS’17) is supported by Facebook Caffe2 and HP
parameter server product for distributed learning.

i
S

Academic Recognitions: |

ASP-DAC’17 Best Paper NIPS’17 Oral Presentation DAC’16 Best Paper
Award (40 out of 3240 submissions) Nomination




Research of ASIC: Al Computing Platforms

Optimizing training and inference on CPU platforms for high cost efficiency.
Achieved 3.1-7.3X speedup on Intel Atom, Xeon, and Xeon Phi (ICLR’17).

Systematic accelerations of deep learning on GPU and heterogeneous platforms.
Received 3 Place of 2018 IEEE Low-Power Image Recognition Challenge (track
2).

Comprehensive technical portfolio of FPGA-based deep learning, including the first
RNN acceleration work published in major FPGA conferences (FCCM 2015).

Extensive experience on Al Chip design, including both architecture and circuit.
Taping out chips in every 6-9 months.

Access to emerging architectures and device technologies, such as IBM TrueNorth,
Intel Loihi, and ReRAM, Spin Memory, etc.




Chip 1

Research of ASIC: Al Chips

Chip 2

Chip 3
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Research of ASIC: Miscellaneous

Mobile DNN computing platforms (DATE’17 Best Paper)

Before Retrain

. e Train examples in Class 1

N e Train examples in Class 2
° °
° i A Generated examples in Class 1
° o i A Generated examples in Class 2
[ ]
° ! — Decision boundary before retrain i
° i I
o ° Decision boundary after retrain
° ® Real decision boundary

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Robustness and safety of DNN models

After Retrain

Hotspot Check

LR Ground Truth l. RouteNet -

. FPR TPR (%) —
Circuit Name | ‘) | t1p  GR LR SVM I RouteNet |
des_perf 054 | 17 56 54 42 1 74 |
edit_dist 100 | 25 36 38 28 1 64 |
£t 030 [ 21 45 54 31 | 11
matrix_mult a | 021 | 13 30 34 12 | 49
matrix_mult b | 024 | 13 37 41 20 | 53
Average 046 | 18 41 44 27 _62

DNN-enabled Electronic Design Automation (EDA):
Placement & route, High-level synthesis, Timing
analysis, Data argumentation, ...



Learning Structured

Sparsity in Deep
Neural Networks




Complexity of Deep Neural Networks

1.E+09
1.E+08 -
1.E+07 R
1.E+06
1.E+05
1.E+04

parameter

1.E+02 Parameters = W€1ghtS = connections

AlexNet VggNet-19 GooglLeNet ResNets-152

Winners of ImageNet Challenge in recent years

Fewer parameters, fewer computation (FLOP: Floating Point Operation)

How to reduce the number of parameters in DNN so as to
reduce FLOP, meanwhile maintain the classification accuracy?



Non-structurally Sparse DNNs

® State-of-the-art methods to reduce the number of parameters
® Weight regularization (L1-norm)
® Connection pruning

Layer] convl conv2 conv3 conv4 conv)
Sparsity%|  0.927 0.95 0.951 0.942 0.938
Theoretical speedup 2.61 7.14 16.12 12.42 10.77
Sparsity: the ratio of zeros remained
Layer Weigh'[s FLOP Act% Weights% FLOP% ®Remaining Parameters  ®Pruned Parameters
convl | 35K 211IM  88% 84% 84% 60M
conv2 | 307K 448M  52% 38% 33% .
conv3 | 885K 2909 37% 35% 18%
convd | 663K 224M  40% 37% 14% 30M
convS | 442K 150M  34% 37% 14%
fel J8M Mo 4 44 . AlexNet, B. Liu, et al., CVPR 2015
fe2 17M 34M 40% 9% 3% y . - | exNet, B. Liu, et al,,
fe3 iaM &M 100%  25% 10% N
- - -\\ ‘{L \{b !\(:\ \C‘;L 5 @
Total | 61M 1.5B  54% 11% 30% & & & ®




Theoretical Speedup # Practical Speedup

2 1.5 - -1
é & EAQuadro K600
g ¥ ElTesla K40c
wn s LIGTX Titan

2 <@-Sparsity

0

convl conv2 conv3 conv4 convs

Forwarding speedups of AlexNet on GPU platforms and the sparsity. Baseline is GEMM of cuBLAS. The
sparse matrixes are stored in the format of Compressed Sparse Row (CSR) and accelerated by cuSPARSE.

Hardcoding nonzero weights in source
code in B. Liu, etc., CVPR 2015

Software customization

Irregular Poor No or
Random .
sparsity memory cache trivial
P access locality speedup,

Hardware customization

Customizing an EIE chip accelerator for
compressed DNN in S. Han ISCA 2017



Theoretical Speedup = Practical Speedup

Example: Removing rows/columns in GEMM (row/column-wise sparsity)

feature map Non-structured sparsity

/ conv2_1: weight sparsity (col:8.7% row:19.5% elem:94.6%)

Structured sparsity
Weight matrix conv2_1: weight sparsity (col:75.2% row:21.9% elem:91.5%)

GEMM

GEneral Matrix Matrix Multiplication

5.17X speedup

Higher speedup with
Structure Regular Great & p P
it memory d software or hardware
sparsity access speedup customization




Structured Sparsity Regularization

e Group Lasso regularization in ML model

argmln{E(W)} argmln{ ( )_H1 R ( )} Many groups will be zeros
R,(w) = 2521 ||w(g)||g’

w

argmin{E(w)} =argmin{E,(w)}

w w

st. Rg (W) <17,

Example:

R (Wow)w))=wZ+w? +fw? <n

group 1 group 2




SSL: Structured Sparsity Learning

e Group Lasso regularization in DNNs:

E(W)=Ep(W)+XA-RW)+X,- > Ry (W(z))

=1
Ry(w) = Y0 [[w@)]]

Learned structured sparsity is determined by the way of splitting groups

Penalize unimportant

filters and channels Learn filter shapes Learn the depth of layers
channel-wise _(ff_ _ shortcut
. LY
'.. | .I ++
* \i . .
filter-wise # H(f;) . : — depth-wise 0




Penalizing unimportant filters & channels

LeNet on MNIST
Table 1: Results after penalizing unimportant filters and channels in LeNet
LeNet # Error  Filter#%  Channel #° FLOP § Speedup *
1 (baseline) 09%  20—50 1—20 100%—100%  1.00x—1.00x
2 0.8% 5—19 1—4 25%—1.6% 1.64x—5.23x
3 1.0% 3—12 1—3 15%—3.6% 1.99x—7.44x

3In the order of convI—conv2

convl1 filters (gray level 128 represents zero)

Lenet 1 ER RN P E DS =D RS
LeNet 2 |10 [0 1 4 [ Y 1 ) 0 Y s O (O I N [ R
LeNet 3 |10 00 [ ¥ () Y ) Y ) 0 IO [ R

Fewer but more natural patterns

H
L




Learning smaller filter shapes

Table 2: Results after learning filter shapes in LeNet

LeNet # Error  Filter size®  Channel # FLOP Speedup
1 (baseline)  0.9% 25—500 1—20 100%—100%  1.00x—1.00x
4 0.8% 21—41 1—2 8.4%—8.2% 2.33x—6.93 %
5 1.0% T7—14 1—1 1.4%—2.8%  5.19%x—10.82x

¥ The sizes of filters after removing zero shape fibers, in the order of convI—conv2

Learned shapes I
f conv1 filters: —
© ' 5X5 21

LeNet 1 LeNet 4 LeNet 5

Learned shape of conv2 filters @ LeNet 5 3D 20x5x5 filters is regularized to 2D filters!
i]ﬁ Smaller weight matrix

SSL can efficiently learn DNNs with smaller filters without accuracy loss



AlexNet@ImageNet

Learning row-wise and column-wise sparsity:

Table 4: Sparsity and speedup of AlexNer on ILSVRC 2012

#  Method Topl err. Statistics convl conv2 conv3d convd conv5 L0 e
. — 2 my mssL
sparsity 67.6% 924% 97.2% 96.6% 94.3% 0 5 o
1 0 44.61% CPU x 0.80 291 484 383 276 X g
GPU x 025 052 138 104 136 54 |7
column sparsity 0.0%  63.2% 76.9% 84.7% 80.7% & i
. row sparsity 9.4% 129% 40.6% 469% 0.0% |
z SSLo 44.60% CPU x 105 337 627 973 493 3
GPU x 100 237 494 403 305 !
3 pruning[6] 42.80% sparsity 16.0% 62.0% 65.0% 63.0% 63.0% i 2
sparsity 147% 762% 853% 81.5% 76.3% Z i1
4 A 42.51% CPU x 034 099 130 110 093 o
GPU x 008 017 042 030 032 50
column sparsity  0.00% 20.9% 39.7% 39.7% 24.6% & i Quadro Tesla Xeon Xeon Xeon |Xeon
5 SSL 42.53% CPU x 100 127 164 168 132 : s T4 T2 |T1
GPU x 100 12 163 172 136 ‘ 206 loss
1. Non-structured sparsity method even slows down in some layers
2. layer-wise 5.1X /3.1X on CPU/GPU with 2% accuracy loss
3. layer-wise 1.4X on both CPU and GPU w/o accuracy loss
4. Higher speedups than non-structured speedups



Regularizing the depth of DNNs

shortcut

Experiments of ResNets on CIFAR-10

K. He, CVPR2016 X
Baseline
| weight layer |
|
]—"(x) - lre u <
| weight layer | identity
]—"(x) +x d::pth—wise w9
ResNet-20/32: baseline with 20/32 layers --
SSL-ResNet-#: Ours with # layers after ResNet | 20 8.82% |32 7.51%
learning depth of ResNet-20 SSLResNet | 14 8.54% |18 7.40%
10 T T T 20 T T T
| 9-SSL - - -ResNet-20 — ResNet=32|| %2j [32x32 MM 16x16 S-S o | 1
o 1613232 L1616 MEMIS-8| ]
= ol ONO ] S 14 .
e I N GEEGEEEEEEEEPEEPEEREEEE, Ef o : .
S = 10 ) i
N S N 8 6 a
#* 4 N
2 —
7 L L L 0

12 14 16 18 20 16
SSL—ResNet—# SSL—ResNet—#






Distributed Deep Learning

When parallelism increase, communication is the bottleneck

, —
Parameter Server W = W - WAW

UooUood

Synchronize weights in
parameter server

DistBelief by Google



TernGrad - distributed training with
ternary gradients

Key ideas to reduce communication:

1. Randomly quantize gradients to only three levels (0, 1)

2. The expectations of quantized gradients equal original values
3. Exchange quantized gradients instead of floating weights

Algorithm 1 TernGrad: distributed SGD training using
ternary gradients.

Worker:i=1,...,. N
Input ztm , a part of a mini-batch of training samples =z

Compute gradients géi) under zt(”

Parameter
server

Ternarize gradients to gé” = ternarize(gi” )

Push ternary g, ’ to the server
Pull averaged gradients g; from the server
Update parameters w1 ¢— Wy — N g¢
Server :
7 Average ternary gradients gz = ), §t(1’) /N

A AW i e

Worker 1

Wit
W —Zge

Worker gy = ternarize(g,) = s; - sign (gy) o by
Worker 2 N

sut®
w.
t+1 Weiq

“w,—g; “w,—g; {P{btk =1 |gt) = |.qtk|/3t
Plbye =01]gt) =1~ |gixl/se

sy = max (abs (g;))




TernGrad - Convergence

Mathematically guarantee the convergence of TernGrad

L. Bottou 1998

Assumption 1. C(w) has a single minimum w* and gradient —V ,,,C(w) always points to w*, i.e.,

Ve > 0, ' inf“2 (w — w*)" V,C(w) > 0. (8)
w—w* || >e
Convexity is a subset of Assumption 1, and we can easily find non-convex functions satisfying it.

Assumption 2. Learning rate v is positive and constrained as Zt 0 Vi < +oo and Zt oVt =
400, which ensures ~y; decreases neither very fast nor very slow respectively.

We assume the gradient is bounded as

Assumption 3 (Gradient Bound). The gradient g is bounded as E {maz(abs(g)) - ||g|[1} < A +
B||w — w*||?, where A, B > 0 and || - ||y is £, norm.

Theorem 1. When online learning systems update as wiy1 = w; — Y (st - sign(ge) o by)
using stochastic ternary gradients, they converge almost surely toward minimum w*, ie.,
P(liIIlt_>+m wy = '[U*) = 1.




TernGrad - Gradients Histograms

conv i A ' I\
A A
A A A -, - A A -
¢ ’A A ’ At by
J:I E - / — ‘1 A A _ ‘i “ N

(a) original (b) clipped (c) ternary (d) final

Figure 2: Histograms of (a) original floating gradients, (b) clipped gradients, (c) ternary gradients
and (d) final averaged gradients. Visualization by TensorBoard. The DNN is AlexNet distributed on
two workers, and vertical axis is the training iteration. Top row visualizes the third convolutional
layer and bottom one visualizes the first fully-connected layer.



TernGrad - AlexNet

(a) Top-1 accuracy vs iteration (b) Training loss vs iteration
70% 8
60% __.__..--4--4---0---07 “
50% el * % baseli
(4 . - e o
40% f =-=-baseline 5 |\ . ase 1ned
30% |1 terngrad 4 || erngra
/ 3R
20% | 2 e
10% ':' | B ok S i
0% ¢ 0
0 50000 100000 150000 0 50000 100000 150000
Table 2: Accuracy comparison for AlexNet.
base LR mini-batch size  workers iterations gradients weight decay DR top-1 top-3
floating 0.0005 0.5 5733% 80.56%
0.01 256 2 370K TernGrad 0.0005 02 5761% 80.47%
TernGrad-noclip 0.0005 02 54.63% 78.16%
floating 0.0005 05 57.32% 80.73%
0.02 >12 4 185K TernGrad 0.0005 02 57.28% 80.23%
floating 0.0005 0.5 56.62% 80.28%
0.04 1024 8 925K TernGrad 00005 02 5754% 80.25%

T DR: dropout ratio, the ratio of dropped neurons. * TernGrad without gradient clipping.



TernGrad - GoogLeNet

Table 3: Accuracy comparison for GoogLeNet.

base LR mini-batch size workers iterations gradients weightdecay DR top-5

floating 4e-5 0.2 88.30%
0.04 128 2 600K 1 Grad le-5 0.08 86.77%
floating de-5 0.2 87.82%
0.08 256 4 300K 1rnGrad le-5 0.08 85.96%
0.10 512 3 300K floating 4e-5 0.2 89.00%

TernGrad 2e-5 0.08 R86.47%




TernGrad - Speedup

A performance model to evaluate the speed distributed training.

Training throughput on GPU cluster with Training throughput on GPU cluster with
Ethernet and PCI switch InfiniBand and NVLink
199090 4 AlexNet FP32 AlexNet TemnGrad 240000 u AlexNet FP32 AlexNet TemGrad
= GooglLeNet FP32 GooglLeNet TernGrad = GoogleNet FP32 GoogleNet TemGrad
soogo ™ VggNet-A FP32 VggNet-A TemGrad 200000 mVggNet-A FP32 VggNet-A TernGrad
4000 6000
g $ 160000
£ 60000 |3000 ]
2 a 4000
2 2000 120000
£ 40000 E 2000
1000 | | 80000
20000 0 II- III Il II-I - I |I | I
| 40000 |0 Ex - K 1 1 |
0 — - e u:l vl II'| - - 0 - mea [TH n. II. |Il 1
1 2 4 8 16 32 64 128 256 512 1 6 32 64 128 256 512
# of GPUs # of GPUs
(a) (b)

Figure 5: Training throughput on two different GPUs clusters: (a) 128-node GPU cluster with
1Gbps Ethernet, each node has 4 NVIDIA GTX 1080 GPUs and one PCI switch; (b) 128-node GPU
cluster with 100 Gbps InfiniBand network connections, each node has 4 NVIDIA Tesla P100 GPUs
connected via NVLink. Mini-batch size per GPU of AlexNet, GoogLeNet and VggNet-A is 128, 64
and 32, respectively



RouteNet: Routability

Prediction Using CNN




Early Routability Prediction

Routability: post-routing design rule violations
Early prediction at placement stage

Analytical techniques
— Very fast
- Not enough fidelity
Trial routing
— Acceptable fidelity
— Not fast enough

34



Previous ML Approaches

e Learning on small cropped regions

Cell / Pin density

Blockage Other

SVM / LR

Input

Label

DRC violation

35



Challenges of Macros

e Layoutisless homogeneous

e Correlation between pin density and #DRV becomes weak

0.32
Rz=0.55

5
+= 0.31p
il
©
> L4
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© e ® o - ; :
- o 55 —
5 _[¥x
L 0.29n
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0.28

0 10000 20000 30000 40000

#DRV Correlation, no Macro
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(a)
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o
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0 10000 20000 30000 40000 50000
#DRV

(b)

Each point corresponds to one placement

36



Problem Formulations

e Predicting overall number of design rule violations (#DRV)

— Given two placement solutions, tell which is more routable with high fidelity

e DRV hotspot detection

— Given a relatively routable placement solution, pinpoint DRV hotspots such that
mitigation measures are well targeted

37



CNN for #DRV Prediction

Input CONV

Convolutional (CONV) layers
Pooling (POOL) layers

Fully Connected (FC) layers
Widely used in image classification

e Given a cell placement, classify it among
four routability levels, c0, c1, c2, c3

e 0 has the least #DRVs

38



An Important Feature

e RUDY (Rectangular Uniform wire DensitY) (P. Spinder et al. DATE07)
e RUDY at a point is superposition of RUDYs of multiple nets

A net h

RUDY =“*t" >

w-h

39



Features for #DRV Prediction

Physical Design Flow Features
Floorplanning

Macro:

- region occupied by macros —— [Macro
d " ¢ ) ] hl Global Placement Giobal Celi

— density of macro pins in each layer ‘ = |ciobal RUDY
Cell: Detailed Placement Coll

_ = rupv
— density of cells

_ . Trial Routing |:> TR Congestion
— density of cell pins

Global Routing

Global Cell: ‘ ———» GRCongestion
— cell features at global placement Detailed Routing

erification DRC Violation
Global RUDY: verteston ==

— RUDY features calculated by global placement results

Estimation

} #DRV

> | Detect Hotspot

=

40



Additional Features for Hotspot Detection

e RUDY

- long-range RUDY
e RUDY from long-range nets
- short-range RUDY
e DURY from short-range nets
- RUDY pins
e pins with density value equal to the
RUDY value of its net

e Congestion
— trial global routing congestion
— global routing congestion

e DRC violation
— prediction target / label

Physical Design Flow Features Estimation
Floorplanning
———» Macro ]
Global Placement #DRV
Global Cell
‘v = | Global RUDY
Detailed Placement Cell

=> RUDY > | Detect Hotspot
Trial Routing=» TR Congestion

Global Routing

‘ ———» GRCongestion

=

Detailed Routing

Verification ————) |DRC Violation

41



Feature Illustration

wxhxF Input Tensor

h=800

(1) K @ -

F=4 (#Features)

(3) (4)

Input tensor constructed by stacking 2D features:
(1) Pin density, (2) macro (3) long-range RUDY, (4) RUDY pins

(a) matrix_mult_b: ¢, (b) matrix_mult_b: cg

(c) edit_dist: ¢, (d) edit_dist: cg

Input features for #DRV prediction.
Red: macro region

Green: global long-range RUDY
Blue: global RUDY pins
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Fully Convolutional Network (FCN) for Hotspot Detection

“tabby cat”

N s 1
u AL SO EIENE
o° \

convolutionalization

tabby cat heatmap

o°
Eliminate FC layers

May use transposed-convolutional to up-sample
Used in image segmentation, object detection
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FCN Architecture for Hotspot Detection

¢

Conv(9)Pool Shortcut Trans(5) Conv(3)
Conv(7)Pool Trans(9) Conv(5
Conv(9) Conv(7) '
32 64 32 32

Filter size indicated in ()
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Experiment Setup

e Five designs from ISPD 2015 placement contest

e ~300 different placements by placing macros in different ways

e Placement, routing and DRC are done by Cadence tool

e When a circuit is tested, the model trained with the other circuits

e SVM and Logistic Regression (LR) methods for comparison

Circuit Name #Macros  #Cells  #Nets Width (um) #Placements
des_perf 4 108288 110283 900 600
edit_dist 6 127413 131134 800 300
fit 6 30625 32088 800 300
matrix_mult a 5 149650 154284 1500 300
matrix_mult b 7 146435 151614 1500 300




#DRYV Prediction Fidelity

e How methods recognize
placements with the lowest

#DRV level (cy)

e The quality of placements
selected by each method

— The best rank of top ten
placements predicted to have
least #DRV

Circuit Name

co/c1+c2+c3 accuracy (%)

Route
SVM LR TR GR Net

SVM

Best rank in top 10
LR TR GR

Route / Our method

Net

des_perf
edit_dist

fft
matrix_mult_a
matrix_mult_b

63 74 80 77 80
69 68 78 77 76
66 62 73 70 75
66 65 78 74 72
63 62 76 73 76

g7th
17th
6th
30th
22nd

15 20ttt 2* TR: Trial Routing

th rd rd nd )
705 3 2 GR:Global Routing
6t 2nd 33r 15t
5th lst 1St 5th

93 rd 4th 1 st 4th

Average

65 66 77 74 76

3211(31

27th znd 8th 3rd
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#DRYV Prediction Error and Runtime

e Y: gap between the ‘bestin 10’

and the actually 1st-ranked < 20/ Lo
. o
placement with least #DRV z <« TR
m 151 = GR
()
— % : RouteNet
* X:inference time taken foreach %4, *  RouteNet_w_train
method s
=
s T# . )
e RouteNet achieves low i 0];;: : g T
inference time and high 0 100 101 102 103

accuracy at the same time

Inference time (sec / placement)
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DRV Hotspot Detection Evaluation

e Same decision threshold is used for all designs
e Slight different FPR, but all under 1%

e RouteNet is superior to all methods and improves global
routing accuracy by 50%

Prediction Result

Cirenit N FPR TPR (%) = : .
1rcul ame (% ) TR GR LR SVM RouteNet Positive | Negative Evaluation
des_perf 054 | 17 56 54 42 74 Positve | TP | PN | TPR= Il

edit_dist 100 | 25 36 38 28 64 e egive | 7 | N | ppre PP
fit 030 | 21 45 54 31 71 - FPHIN
matrix mult a | 0.21 | 13 30 34 12 49

matrix mult b | 0.24 | 13 37 41 20 53 TPR (True Positive Rate)
Average 046 | 18 41 44 27 62 FPR (False Positive Rate)
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DRC Hotspot Detection Demonstration

Ground Truth

RouteNet
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Our Perspective
L

ML '

|

i itk
i, fl

5. = . :
l &

Al is going mainstream, showing potential on both the cloud

i and edge, however, is limited by infrastructure

AT will be widely adopted by various applications where the proble
~ may not be explicitly formulated well by mathematical models

Future Al will be more user friendly, ‘ 01

more automatic, more cost efficient |
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