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Outline

• Introduction
• Learning Structured Sparsity in Deep Neural 

Networks 
– NIPS 2016

• TernGrad: Ternary Gradients to Reduce 
Communication in Distributed Deep Learning

– NIPS 2017 (oral)

• ML Application Example in EDA: RouteNet
• Our prospective
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Introduction
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Development of Neural Networks
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Rise and Decline of Neural Network
Convolutional Network

(1980s)
Dark period

(1990s)
Renaissance

(2006 ~ Present)

• Serious problem:            
Vanishing gradient

• No benefits observed 
by adding more layers

• No high performance 
computing devices

Y. Lecun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. D. Jackel. Backpropagation Applied to Handwritten Zip Code 
Recognition.1989.

J. Schmidhuber. Deep Learning in Neural Networks: An Overview. arxiv, 2014.
G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks. Science, 2006.
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Machine Learning in Academia

NIPS registrations growth
2015: 3755, 2016: 6000+

Journal articles mentioning
“deep learning” or “deep
neural networks”

Source: Office of Science and Technology 
Policy/The White House
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Machine Learning in the Market

Source: Bloomberg, Jefferies

Technology cycle - from PC, to smartphone, to artificial intelligence?

“Pure Play” Share Price Performance
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NSF IUCRC ASIC Center
Industry 

members:

Members include influential faculty across the three research sites:

What is ASIC?
• The Alternative Sustainable and Intelligent Computing 

(ASIC) Center is a multi-site, multidisciplinary 
consortium that explores research frontiers in emerging 
computing platforms for cognitive applications

• The ASIC  Center focuses on designing alternative 
computing platforms for cognitive applications, which 
perform inefficiently on conventional von Neumann 
architectures
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Facts of ASIC

22 AFFILIATED FACULTY 
MEMBERS, 
INCLUDING 6 FEMALE 
PROFESSORS 

8 DIFFERENT DEPARTMENTS, 
INCLUDING ECE, CS, ACMS, 
BIO, MAE, MATH, PHYS AND 
SIS 

1 MEMBER OF NATIONAL 
ACADEMY OF 
ENGINEERING

10 IEEE FELLOWS

1 ACM FELLOWS AND 3 
ACM DISTINGUISHED 
MEMBERS 

13 RECIPIENTS OF NSF 
CAREER AWARD



Research of ASIC: DNN Acceleration 

Weight quantization

RESEARCH TOPICS

Compact models

Network compression

Distributed learning

Network pruning

DAC’16 Best Paper 
NominationAcademic Recognitions: ASP-DAC’17 Best Paper 

Award
NIPS’17 Oral Presentation 

(40 out of 3240 submissions)

Representative Industrial Impacts
 Our 1-level quantization method (ASP-DAC’17 and DAC’16)  is included in 

the latest SDK of IBM TrueNorth Chip, achieving 6X performance 
improvement and/or 2/3 hardware cost reduction.

 Our structural pruning technique (NIPS’16) 
• is supported by the library of Intel Nervana Neural Network Processors.
• is adopted by Intel NLP accelerator.
• is adopted by SF-Technology, achieving 2X performance improvement.   

 Our TenGrad technique (NIPS’17) is supported by Facebook Caffe2 and HP 
parameter server product for distributed learning. 



Access to emerging architectures and device technologies, such as IBM TrueNorth, 
Intel Loihi, and ReRAM, Spin Memory, etc.

Systematic accelerations of deep learning on GPU and heterogeneous platforms. 
Received 3rd Place of 2018 IEEE Low-Power Image Recognition Challenge (track 
2).

Comprehensive technical portfolio of FPGA-based deep learning, including the first 
RNN acceleration work published in major FPGA conferences (FCCM 2015). 

Extensive experience on AI Chip design, including both architecture and circuit. 
Taping out chips in every 6-9 months.  

Research of ASIC: AI Computing Platforms

Optimizing training and inference on CPU platforms for high cost efficiency. 
Achieved 3.1-7.3X speedup on Intel Atom, Xeon, and Xeon Phi (ICLR’17).  CPU

GPU

FPGA

ASIC

Emerging

Xilinx HLS & VivadoSoftware 
Development Kit (SDK)

Hardware
Constraints

Configuration
Table

Parallel PEs & 
Custom Datapath

Memory sub-system

Locality-aware
Regularization

Network Compression

Pre-trained CNNs

Performance
Modelling

HLS Instantiation

NN Sparsification FPGA-based Accelerator



Research of ASIC: AI Chips
The largest ReRAM-
based Neuromorphic 
PIM Chip in the world! 

Generative Adversarial Network Acceleration (ASP-
DAC’18)

Pipeline and NoC Design (HPCA’17, 
DAC’15)

Graph Computing & Process-in-Memory (HPCA’18)



Research of ASIC: Miscellaneous

Mobile DNN computing platforms (DATE’17 Best Paper)

Robustness and safety of DNN models

DNN-enabled Electronic Design Automation (EDA): 
Placement & route, High-level synthesis, Timing 
analysis, Data argumentation, …



Learning Structured 
Sparsity in Deep 
Neural Networks



Fewer parameters, fewer computation (FLOP: Floating Point Operation)
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How to reduce the number of parameters in DNN so as to 
reduce FLOP, meanwhile maintain the classification accuracy?

Winners of ImageNet Challenge in recent years 

Parameters = weights = connections

Complexity of Deep Neural Networks



Non-structurally Sparse DNNs
• State-of-the-art methods to reduce the number of parameters

• Weight regularization (L1-norm)
• Connection pruning

Layer conv1 conv2 conv3 conv4 conv5
Sparsity% 0.927 0.95 0.951 0.942 0.938

Theoretical speedup 2.61 7.14 16.12 12.42 10.77

AlexNet, B. Liu, et al., CVPR 2015

AlexNet, S. Han, et al., NIPS 2015

Sparsity: the ratio of zeros remained



Theoretical Speedup ≠ Practical Speedup

Forwarding speedups of AlexNet on GPU platforms and the sparsity. Baseline is GEMM of cuBLAS. The 
sparse matrixes are stored in the format of Compressed Sparse Row (CSR) and accelerated by cuSPARSE.

Random 
sparsity

Irregular
memory
access

Poor
cache
locality

No or 
trivial 
speedup

Hardcoding nonzero weights in source
code in B. Liu, etc., CVPR 2015

Customizing an EIE chip accelerator for
compressed DNN in S. Han ISCA 2017

Software customization

Hardware customization



Theoretical Speedup ≈ Practical Speedup

Structured
sparsity

Regular
memory
access

Good 
cache
locality

Great
speedup

Higher speedup with
software or hardware

customization
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Example: Removing rows/columns in GEMM (row/column-wise sparsity)

GEMM
GEneral Matrix Matrix Multiplication 

Non-structured sparsity

Structured sparsity
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Structured Sparsity Regularization
• Group Lasso regularization in ML model

Example:

group 1 group 2 M. Yuan, 2006

(w0,w1)=(0,0)

Many groups will be zeros



SSL: Structured Sparsity Learning
• Group Lasso regularization in DNNs：

Penalize unimportant 
filters and channels Learn filter shapes Learn the depth of layers

Learned structured sparsity is determined by the way of splitting groups 



Penalizing unimportant filters & channels
LeNet on MNIST

conv1 filters (gray level 128 represents zero)

LeNet 1
LeNet 2
LeNet 3

Fewer but more natural patterns



Learned shapes 
of conv1 filters:

LeNet 1 LeNet 4 LeNet 5
5x5 21 7

Learned shape of conv2 filters @ LeNet 5 3D 20x5x5 filters is regularized to 2D filters!

SSL can efficiently learn DNNs with smaller filters without accuracy loss

Smaller weight matrix

Learning smaller filter shapes



AlexNet@ImageNet

1. Non-structured sparsity method even slows down in some layers
2. layer-wise 5.1X /3.1X on CPU/GPU with 2% accuracy loss
3. layer-wise 1.4X on both CPU and GPU w/o accuracy loss
4. Higher speedups than non-structured speedups

Learning row-wise and column-wise sparsity:

2%
 loss

N
o loss

2% loss



Regularizing the depth of DNNs
K. He, CVPR2016

Baseline

ResNet-20/32: baseline with 20/32 layers
SSL-ResNet-#: Ours with # layers after
learning depth of ResNet-20

Experiments of ResNets on CIFAR-10

# layers error # layers error

ResNet 20 8.82% 32 7.51%

SSL-ResNet 14 8.54% 18 7.40%



TernGrad: Ternary Gradients 
to Reduce Communication in 

Distributed Deep Learning



Distributed Deep Learning

DistBelief by Google

Train the same model by
different data in parallel

Synchronize weights in
parameter server

When parallelism increase, communication is the bottleneck



TernGrad – distributed training with 
ternary gradients

Parameter 
server

Worker 1
𝒘𝒘𝑡𝑡+1
← 𝒘𝒘𝑡𝑡 − 𝒈𝒈𝑡𝑡

Worker 2
𝒘𝒘𝑡𝑡+1
← 𝒘𝒘𝑡𝑡 − 𝒈𝒈𝑡𝑡

Worker
N

𝒘𝒘𝑡𝑡+1
← 𝒘𝒘𝑡𝑡 − 𝒈𝒈𝑡𝑡

……𝒈𝒈𝑡𝑡
(1)

𝒈𝒈𝑡𝑡
(2) 𝒈𝒈𝑡𝑡

(𝑁𝑁)

𝒈𝒈𝑡𝑡 𝒈𝒈𝑡𝑡 𝒈𝒈𝑡𝑡

Key ideas to reduce communication:
1. Randomly quantize gradients to only three levels (0, ±1)
2. The expectations of quantized gradients equal original values
3. Exchange quantized gradients instead of floating weights



TernGrad – Convergence

L. Bottou 1998 

Mathematically guarantee the convergence of TernGrad



TernGrad – Gradients Histograms



TernGrad – AlexNet
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(b) Training loss vs iteration(a) Top-1 accuracy vs iteration



TernGrad – GoogLeNet



TernGrad – Speedup
A performance model to evaluate the speed distributed training.
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RouteNet: Routability
Prediction Using CNN
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Early Routability Prediction

• Routability: post-routing design rule violations

• Early prediction at placement stage

• Analytical techniques
– Very fast

– Not enough fidelity

• Trial routing
– Acceptable fidelity

– Not fast enough
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Previous ML Approaches

• Learning on small cropped regions
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Challenges of Macros

• Layout is less homogeneous

• Correlation between pin density and #DRV becomes weak

Each point corresponds to one placement
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Problem Formulations 

• Predicting overall number of design rule violations (#DRV)
– Given two placement solutions, tell which is more routable with high fidelity 

• DRV hotspot detection
– Given a relatively routable placement solution, pinpoint DRV hotspots such that 

mitigation measures are well targeted
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CNN for #DRV Prediction

• Given a cell placement, classify it among 
four routability levels, c0, c1, c2, c3

• c0 has the least #DRVs

Convolutional (CONV) layers
Pooling (POOL) layers
Fully Connected (FC) layers
Widely used in image classification
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An Important Feature

• RUDY (Rectangular Uniform wire DensitY) (P. Spinder et al. DATE07)

• RUDY at a point is superposition of RUDYs of multiple nets

A net

w

h

RUDY = 𝑤𝑤+ℎ
𝑤𝑤�ℎ
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Features for #DRV Prediction

• Macro:
– region occupied by macros
– density of macro pins in each layer

• Cell:
– density of cells
– density of cell pins

• Global Cell:
– cell features at global placement

• Global RUDY:
– RUDY features calculated by global placement results
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Additional Features for Hotspot Detection

• RUDY
– long-range RUDY

• RUDY from long-range nets
– short-range RUDY

• DURY from short-range nets
– RUDY pins

• pins with density value equal to the
RUDY value of its net

• Congestion 
– trial global routing congestion
– global routing congestion

• DRC violation
– prediction target / label
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Feature Illustration

Input features for #DRV prediction.
Red: macro region
Green: global long-range RUDY
Blue: global RUDY pins

Input tensor constructed by stacking 2D features:
(1) Pin density, (2) macro (3) long-range RUDY, (4) RUDY pins
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Fully Convolutional Network (FCN) for Hotspot Detection 

Eliminate FC layers 
May use transposed-convolutional to up-sample
Used in image segmentation, object detection

Image from Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2017. Fully Convolutional Networks for Semantic Segmentation. (TPAMI)
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Filter size indicated in ()

FCN Architecture for Hotspot Detection
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Experiment Setup

• Five designs from ISPD 2015 placement contest
• ~300 different placements by placing macros in different ways
• Placement, routing and DRC are done by Cadence tool
• When a circuit is tested, the model trained with the other circuits
• SVM and Logistic Regression (LR) methods for comparison
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#DRV Prediction Fidelity

• How methods recognize 
placements with the lowest 
#DRV level (𝑐𝑐0)

• The quality of placements 
selected by each method
– The best rank of top ten 

placements predicted to have 
least #DRV  

Our method

TR: Trial Routing
GR: Global Routing
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#DRV Prediction Error and Runtime 

• Y: gap between the ‘best in 10’
and the actually 1st-ranked 
placement with least #DRV 

• X: inference time taken for each
method

• RouteNet achieves low 
inference time and high 
accuracy at the same time
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DRV Hotspot Detection Evaluation

• Same decision threshold is used for all designs
• Slight different FPR, but all under 1%
• RouteNet is superior to all methods and improves global 

routing accuracy by 50% 

TPR (True Positive Rate)
FPR (False Positive Rate)
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DRC Hotspot Detection Demonstration
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Future AI will be more user friendly,
more automatic, more cost efficient

Our Perspective

1

2

3

AI will be widely adopted by various applications where the problem 
may not be explicitly formulated well by mathematical models

AI is going mainstream, showing potential on both the cloud
and edge, however, is limited by infrastructure
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