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Abstract—Static Timing Analysis (STA) using path based
analysis of timing graph is very crucial in achieving accurate
timing sign-off of chip designs. By nature, such analysis is
compute and run time intensive and is a major bottleneck in
speeding up the timing sign-off for large circuit designs. With
many improvements made to the path tracing techniques, data
collection and file writing are the expensive parts now. We pro-
pose a novel architecture in this paper that helps multi-thread this
portion while maintaining slack ordering. Proposed architecture
also achieves a pipeline effect and avoids any resource locking,
which reduces the idle time for the threads. Experimental results
demonstrate a speed up of nearly 5X end-to-end and over 6X
for the steps of interest due to our implementation.

Index Terms—Path based Static Timing Analysis, multi-
threading, ordered write, pipeline architecture

I. INTRODUCTION

Static Timing Analysis (STA) [1] is one of the primary
tools used in VLSI chip design sign-off flow. STA enables
timing verification that ensures the chips being taped out
meet the specifications. There are two popular algorithms to
implement STA: the first one is block based STA which uses
breadth first traversal approach and the second type is path
based STA, which traverses in depth first manner. While block
based approach has been proved to be more efficient in design
coverage for timing, tracing and identifying critical paths in the
design is still a key requirement for STA tools. STA tools are
used at multiple steps in the entire chip design cycle and are
required to generate failing paths report which are consumed
by both automated optimization tools as well as for manual fix
up of critical paths. Hence, the path based report generation
needs to be very efficient and accurate to keep the turn around
time shorter.

In the past 20 years, there has been great interest to improve
both the quality of sign-off as well as its performance. Many
key conceptual developments in STA have helped improve
the quality and performance of path based reports. Concepts
like statistical STA [2], common path pessimism removal
[3], effective current source modelling [4] and hierarchical
timing [5] have improved the quality of timing analysis; they
have also made the timing data collection more complex and
runtime expensive.

With the advancements in technology nodes and increase
in chip sizes, the amount of analysis data generated by STA
tools is growing. A failing paths report for a large circuit may
contain millions of paths. [7] describes method to perform path
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tracing in parallel and [8] presents techniques to reduce the
number of paths traced to find the critical paths. [9] explains
a technique to estimate critical paths in a design instead of
tracing multiple paths to get the critical path. Approach like
incremental timing in [10] reduces the computation needed for
failing paths report. [11] and [12] describe efficient algorithms
to find k-critical timing paths in a design. While there is a lot
of focus to make the path tracing techniques efficient and to
reduce the amount of work required to get to the critical paths
[6], the reporting of these paths in a human consumable form
however did not get commensurate attention. With efficient
path tracing and estimation techniques, the data collection and
file writing steps have become the most dominating steps in
the entire failing paths report generation.

One additional constraint that applies to failing paths report
is to identify the critical paths and sort the generated report
in the order of slack criticality (increasing slack order). To
achieve the correct slack ordering across paths in the report, all
the paths must be traced before writing any path to a file (refer
Sec. II-A). This constraint prevents the tool from applying
the commonly used parallelism techniques to improve the
performance of failing paths report.

In this paper, we present a novel architecture to speed up
the data collection and report writing steps involved in failing
paths report. It writes the data in ordered manner from a
pipeline which is created for the data collected in parallel. The
framework avoids any locking for the thread synchronization
and enables efficient memory management. The framework
can be tuned for better performance based on the computation
requirements of the data collection and file writing portions of
the application. Our approach shows substantial improvement
in run-time for large reports containing millions of paths.
These features add up to faster chip design cycle without
compromising on the accuracy of results.

The rest of the paper is organized in multiple sections. Sec-
tion II describes the steps involved in generating a failing paths
report and runtime analysis to identify the dominating steps
in the process. Section III presents the overall solution archi-
tecture with sub-sections focusing on individual components
of the architecture. Section IV talks about some fine tuning
techniques to get optimum performance from the architecture.
Finally section V explains the experimental results and we
conclude and discuss next steps in section VI.



II. BACKGROUND

A. Steps in path based report
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Fig. 1: Steps in path based report generation

A failing paths report generation, at an abstract level,
involves multiple steps as shown in the order of execution
in Fig 1. These steps are explained below in detail:

1. Gathering Endpoints (GF): Gathering all failing tests,
which we call endpoints, in a design based on the slack
cutoff and sort them by slack. This step is also responsible
for applying various endpoint level filters such as slack
threshold, edges, clock type, types of checks and many
more. In order to sort the endpoints by slack, GE step also
performs computation of sub-critical slack for endpoints
if the check causing the worst slack is filtered out.

2. Path Tracing (PT): This step is responsible for tracing
requested number of paths, collect all the traced paths and
sort them based on the slack. It supports various flavors of
path tracing such as k-worst paths across design, k-worst
paths per endpoint for n-worst endpoints in the design,
k-worst paths per physical pin in the design, etc. The
time consumed in the path tracing step depends on the
flavor requested. The path traversal is performed over the
in-memory timing graph and the path is stored as a linked
list of nodes. This makes the path tracing step memory
and runtime efficient.

3. Data Collection (DC): Collecting timing data for each
node and delay data for each edge in a path and for-
matting the data in requested format. This step also
involves collecting additional path level information. Data
collection step is significantly slower as it involves col-
lecting timing data for all the nodes and edges in the
path followed by multiple string formatting operations
on collected data.

4. File Write (F'W): Writing paths to a file in slack sorted
order.

Algorithm 1 shows a pseudo-code for the failing paths report
generation. GE step returns a list of failing tests T sorted
based on slack (lines 1-4). This sorted list of failing tests is
fed as input to PT step which is responsible for tracing the
requested number of paths for every test in the list (lines 5-
7). The output of PT is a list of traced paths P which are
sorted based on the slack values. DC' step then collects the
timing data for every node of each path and formats it in
a user readable format (lines 9-12). The time taken in DC'
step is represented by D. Finally in F'WW step (line 13), the
formatted path data is written to file in a slack sorted order.
The time taken for F'WW step is represented by F. The slack
ordering constraint puts a limitation on running various steps
in parallel.

Algorithm 1: Generate failing paths report

input : timing graph G; number of paths to report per
test p; slack cutoff s
output: Failing paths report containing p paths per test
1 foreach node n in the timing graph G do
2 if n.hasTest() and n.slack < s then
3 L L Push n to list of failing tests T’

4 sort T' in increasing slack order
5 foreach test t in T do

6 P, < tracePaths(t,p, G)

7 Push P, to list of paths P

8 sort P in increasing path slack order

9 foreach path pth in P; do

10 foreach element ¢ in pth do

1 e_timing < CollectTimingData(e)
12 e_line < FormatLine(e_timing)
13 WriteToFile(e_line)

B. Run-time break-down of path based report

In order to identify the steps that need speedup, we collected
the run-time break-down of the failing paths report across
three designs of different sizes as shown in Table I. All these
reports were generated for one million endpoints tracing the
most critical path per endpoint which is the recipe used in the
production timing runs. The bar chart in Fig. 2 clearly shows
that DC and F'W steps are the major contributors taking 69%
to 83% of total report generation time. The time taken by these
steps depends on the number of paths being requested, the
length of paths and the flavor of path tracing as mentioned in
section II-A. DC step is significantly slower than PT step due
to various data collection and formatting operations performed
in DC step as opposed to PT step which primary deals with
in-memory timing graph for traversal and stores the results as
pointers to linked lists.
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Fig. 2: Run-time break-down

III. PROPOSED ARCHITECTURE

Architecture in Fig. 3 shows the proposed solution to
improve performance of DC' and F'W steps described in
section II-A. The flow starts with GE step which finds all
the failing tests in the design, sorts them by slack and passes
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Fig. 3: Proposed Architecture

on the list to PT step for tracing paths. PT' step generates
a list of paths sorted by slack which is then fed to the DC'
step. In DC step, all the traced paths are put in a global work
queue which is responsible for feeding paths to the threads
for processing. m child threads are created and one of the
thread is designated as a writer thread; remaining n — 1 child
threads are designated as data collector threads which perform
the data collection and formatting for the paths in the list. The
data collector threads synchronize with the writer threads using
two vectors described in Sec. III-C. Finally the writer thread
generates the path based report by writing the formatted path
details from the path string vector.

A. Data Collector Threads

Data collector threads, as shown in Fig. 3, are responsible
for processing the paths assigned to them. Processing a path
includes collecting timing data for each node in the path, delay
information for each edge along the path, information related
to the timing check for the path and format it in a human
readable format. The formatted timing data is then stored in a
specific location for the writer thread to pick and write to file.
Each collector thread is assigned a fixed size chunk of paths
(aka workgroup) to process from the work queue. We will
discuss more about the workgroup size in Sec. IV-A. After
processing all the paths in a workgroup, the child thread is
assigned a new workgroup till all the paths in the work queue
are processed.

B. Writer Thread

One of the child threads is designated as Writer thread
which is responsible for writing all the paths processed by
collector threads to a file. Writer thread is responsible for
maintaining the slack order of paths while writing them to
file. The paths are picked in slack order and written to file
in a serial manner. Even though the file writing is serial to
ensure path ordering, it is performed in parallel with data
collector threads working on subsequent paths. Writer thread
keeps looking at a designated location for the availability of
processed paths from data collector threads. Collector and

writer threads synchronization is discussed in more detail in
the next sub-section.

C. Collector-Writer Threads Synchronization

Synchronization between collector and writer threads is
required to maintain the slack based ordering among paths
in the final path based report. The system uses two vectors for
the synchronization of collector and writer threads and avoids
any kind of locking to achieve this synchronization. Both the
vectors are of size P (total number of paths in report).

« Path Status Vector: represents current status of a path
(index of an entry in vector corresponds to path number
in global list)

— 0 represents that the path is not yet processed by any
data collector thread

— 1 represents that the processing of path is complete by
data collector thread and it can be picked up by writer
thread

— 2 indicates that the path is written to file successfully
by the writer thread

« Path String Vector: contains the pointers to the processed
paths which are available for writer thread

Data collector threads work on the set of paths assigned to
them and update the vectors as shown in Fig. 3. Once a path
is processed, corresponding entry in the Path String Vector is
updated by the collector thread. Then collector thread updates
the Path Status Vector replacing 0 by 1. Collector thread gets
back to processing next path in the workgroup. Writer thread
is responsible for maintaining the slack order of paths while
writing to file. It starts from first entry in the vector and keeps
moving in serial manner by writing a path as soon as it is
available. Writer thread keeps polling for status 1 for the next
path in the queue. As soon as bit 1 is available, it reads the
path from Path string vector, writes it to file, releases memory
and then updates the status of the path as 2.

This vector based synchronization avoids any locking of
resources. Collector threads can update the path status vector
without any conflicts with other collector threads as each



thread works on separate sets of paths. Writer thread updates
the entries for a path in these vectors only after processing a
path and hence has no conflict with collector threads. This
architecture also keeps the memory usage contained. Path
status vector uses two bits per path to store the status of the
paths. Path string vector stores the formatted data for each path
and may add to significant memory usage for large reports.
Writer thread releases the memory used to store the path data
after writing the path to file. This ensures that memory is used
only for unprocessed paths in the path string vector.

1V. DISCUSSION
A. Load Balancing

The number of paths assigned to each collector thread is
called as a workgroup. The workgroup size can be varied for
load balancing between the data collector threads. It depends
on the total number of paths to be processed and the time
consumed to process individual paths, which in turn depends
on the path length. Too small a workgroup can lead to
congestion at the global queue while too large a work group
can result in under utilization of collector threads. The optimal
value for the workgroup size can be fine tuned by running
experiments with different workgroup sizes and analyzing
the impact on the wait times of collector threads. For the
experimental results in this paper, we are using a workgroup
size of 1000, which shows the optimum balancing of collector
threads for the set of designs used.

B. Pipeline Architecture

The architecture presented in this paper ensures reduced
wait time for collector as well as writer threads and hence
result in optimal performance with available resources. Fig. 4
shows an example of pipeline effect achieved by this archi-
tecture with one writer and three collector threads. In this
example, each collector thread is assigned a workgroup of
two paths to process at a time.
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Fig. 4: Pipeline architecture: example

Writer thread needs to wait for a very small time at the
beginning when paths are yet to be processed. To avoid this,
the writer thread can be assigned the first set of paths to collect
data and then write to file. Once the data collector threads
start processing paths, they will soon overrun the single writer
thread’s file writing speed. Towards the end when all the paths
are processed by the collector threads, writer thread may take
some additional time to write all the paths resulting in some
idle time for the collector threads. As the number of paths

being processed increase, these wait times become negligible,
ensuring optimal usage of all the child threads.

C. Inflection Point

As mentioned in section II-A, D and F' are the times taken
for data collection and file write steps for a paths report
generated in serial manner. The ratio of D and F' provides
a good metric to understand the performance improvement
that can be achieved using the proposed architecture and can
be used to find the optimum number of threads. As the DC
step is more expensive as compared to F'WW step, the ratio
is much greater than 1 for report generated in serial fashion.
As we apply more threads for the DC' step, this ratio starts
decreasing and approaches 1.

D/F =1 (1)

The point where time taken by file write step becomes equal
to the time taken by data collection step, we define it as
inflection point as shown in Eq. (1). With just one writer
thread, increasing number of thread count after inflection
point, does not help in improving the performance.

We can further compute the number of threads for optimum
performance for a given design using Eq. (1). Let’s define
the number of paths as P and average path length (computed
across all paths) as [. We can compute average data gather
time per node d and file write time per node f using Eqgs. (2).

d=D/(Pxl)
f=F/(Pxl)

If n is the number of threads required to get optimum
performance using the architecture described in this paper,
(n — 1) threads will be used as data collector threads and
one thread as writer thread. For optimum performance, data
collection and file write times in multi-threaded mode should
be equal.

2

(dx«Pxl)/(n—1)=(f*Pxl) 3)
n = (d/f) +1 @

Eq. (4) indicates that the inflection point and in turn the
number of threads for optimum performance is independent
of average path length in a design.

V. EXPERIMENTAL RESULTS

All the experiments mentioned in this paper were performed
on a Intel Xeon E5-2667 v2 3.30 GHz machine with 32 CPUs,
Linux 2.6.32-696.28.1 64 bits operating system and HDD
disks. The proposed solution is implemented in C++ as part
of actual EDA timing analysis tool. The three circuit instances
used for the experiments are sequential circuits with different
functions and sizes. The number of nodes in timing graph is
used to represent the size of timing graph as shown in Table 1.
Here, number of nodes is the count of pins and connections
represent the count of edges joining any two nodes in the
design.

Number of paths P written in each path report was kept
constant at one million and the average path length was
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TABLE I: Design details

Number of nodes | Connections | Avg path length
Design 1 | 710M 820M 42
Design 2 | 1234M 1270M 40
Design 3 | 1265M 1374M 38

calculated across these one million paths for every design.
Experiments involved generating the path based reports in
serial manner followed by multi-threaded report generation
with 4, 8, 12, 16, 20 and 24 threads.

In Fig. 5 we plot the performance improvement achieved
by our solution over the serial paths report generation. Per-
formance improvement for end-to-end report generation time
for different designs is shown in Fig. 5a and performance im-
provement for the multi-threaded portion (DC' and FW steps)
of path report is shown in Fig. 5b. X-axis represents number
of threads used to generate the report and Y-axis represents the
scaling of the performance with respect to serial mode. Paths
report performance scales with increasing number of threads
and shows an improvement of nearly 5X end-to-end. The
improvement in overall report generation time is limited by
the improvement in the portions of interest for our architecture
which includes DC and F'W steps. The improvement seen for
the multi-threaded portion of the report is over 6X as compared

Speed Up
w
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(b) Data gather and file write steps

with respect to different threads

to serial report. Significant performance improvement is seen
by increasing the number of threads upto 12 threads as shown
in Fig. 5a and Fig. 5b but starts to flatten beyond that.

Fig. 6 shows the break-down of normalized (w.r.t. serial)
run-time for all 3 designs. As described in Sec. II-A, the
figures show break-down in terms of 4 major steps. Since
the proposed architecture lends itself to pipelining of file
write, and thus the data gathering and file write steps can
happen in parallel, we can only get combined run-time of
DC + FW. We see that the DC' + FWis the long pole in
all 3 designs and it reduces quite rapidly before flattening out
from about 12 threads onwards. Note that the GE step also
successively reduces as we have multi-threaded that portion
in the implementation. Since the % contribution of GE in
the serial run is small relative to DC + F'W to start with,
the benefit accrued from this multi-threading is comparatively
less interesting. We talked about the significance of the ratio of
data collection time and file write time in Sec. IV-C. With just
one writer thread, increasing number of threads after inflection
point, does not help in improving the performance.

The plot in Fig. 7 shows the ratio of data collection D
and file write F' times for different designs used for the
experiments for different number of threads. The plot clearly
shows a decline in the ratio as number of threads is increased.
A horizontal line intersects the plots at the inflection points
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Fig. 6: Run-time break-down



for different designs and it lies between 8 to 12 threads for
all the designs. Using Eq. (4), inflection points are calculated
as 7, 8 and 7 respectively, for Design 1, Design 2 and
Design 3. There is slight variation between empirical value
and theoretical value calculated using inflection point for
optimum number of threads possibly due to certain noises
involved here like disk write time variation, etc.
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Fig. 7: Inflection Point

VI. CONCLUSION

In this paper, a novel architecture to improve the per-
formance of data collection and file write steps of a path
based report was introduced and the proposed solution is
implemented in the actual timing analysis tool. This paper
demonstrates a significant improvement of nearly 5X end-
to-end and over 6X for DC and F'W steps. The proposed
architecture can implement path based report more efficiently
without compromising on the quality of results and can save
a lot of time in the timing sign-off flows. The architecture
ensures there is no locking of resources and also keeps the
memory usage contained.
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