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ABSTRACT 
Synchoros VLSI design style has been proposed as an alternative 
to standard cell-based design. Standard cells are replaced by 
synchoros, large grain, VLSI design objects called SiLago (Silicon 
Lego) blocks. This new design style eliminates the need to 
synthesise ad hoc wires of any type: functional and infrastructural. 
SiLago blocks are organised into region instances. 
Communication among SiLago blocks in a region instance is 
synchronous and happens over regional NoCs whose fragments 
are also absorbed into SiLago blocks. Consequently, the regional 
NoCs get created by abutment of SiLago blocks. The clock tree that 
is used in a region is called regional clock tree (RCT). Synchoros 
design style requires that the RCT, like the regional NoCs, be 
created by abutting its fragments that are absorbed within the 
SiLago blocks. The RCT created by abutment is not an ad-hoc 
clock tree but a structured and predictable design with known cost 
metrics. The design of such an RCT is the focus of this paper. The 
scheme is scalable, and we demonstrate that the proposed RCT 
can be generated for valid VLSI designs of ~1.5 million gates. The 
RCT created by abutment is correct by construction, and its 
properties are predictable. We have validated the generated RCTs 
with static timing analysis to validate the correct-by-construction 
claim. Finally, we show that the cost metrics of the SiLago RCT is 
comparable to the one generated by commercial EDA tools. 
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1 Introduction 
This paper presents a clock tree generation scheme for a novel 

synchoros VLSI design framework. Synchoros VLSI design was 
proposed as an alternative to the standard cell-based VLSI design 
[1]. The word synchoros is derived from the Greek word for space 
– χώρος (khôros). Synchoricity is analogous to synchronicity1. In 
synchronicity, time is uniformly discretised with clock ticks to 
simplify the temporal and logical composition. In synchoricity, 
space is uniformly discretised with a virtual grid to simplify the 
spatial and electrical composition. 

In standard cells based design, the cells themselves are pre-
designed, but their placement and wires needed to connect, clock, 
power, and reset them must be synthesised anew in an ad-hoc 
fashion. This makes the cost metrics unpredictable for synthesis 
from higher abstractions. In synchoros design style, all wires – 
functional and infrastructural – are absorbed in SiLago (Silicon 
Lego) blocks. SiLago blocks replace standard cells as atomic 
building blocks. All inter-SiLago block wires are bought to the 
periphery at the right place and right metal layer to enable 

 
1 Synchoricity is a different concept from synchronicity, and not a typo. We highlight 
the difference between the two words by underlining the n in synchronicity. 

composition by abutting valid neighbours. This eliminates the 
need to synthesise ad-hoc wires and makes the cost-metrics 
predictable as long as the mapping of functionality to SiLago 
blocks and its topological arrangement is known. This paper 
focuses on how one category of wire – the regional clock tree 
(RCT) – is absorbed in the SiLago block, and a valid and 
predictable RCT gets created by abutment. In synchoros VLSI 
design style, there are three levels of hierarchical objects: Local, 
Regional and Global. 

SiLago blocks are at the lowest level of the hierarchy. All wires 
in SiLago blocks, including the Local Clock Tree (LCT), are ad-
hoc and synthesised by EDA tools. Regions are composed of 
SiLago blocks of the same type, Figure 1. Inter-SiLago block 
communication in a region happens over regional NOCs, whose 
wires are also absorbed within the SiLago blocks. The RCT drives 
the LCTs in each SiLago block. The RCT fragments and ancillary 
circuit to maintain slew and minimise skew are also absorbed in 
each SiLago block. As stated, this is the focus of this paper. The 
RCT must maintain synchronicity amongst SiLago blocks in a 
region, as shown in Figure 2, where an inter-SiLago block timing 
path created by a regional NoC is clocked by two local clocks. 
Region instances communicate with each other over Global 
NOCs, also composed in terms of SiLago blocks [1]; see Figure 1. 
Global NOCs have their own Global Clock Tree (GCT). 

2 RCT by abutment in synchoros VLSI Design 
This section presents the requirements imposed by 

synchoricity on the RCT and how these requirements are fulfilled, 
including creating a valid and predictable design that factors in 
process, voltage, and temperature (PVT) and On-Chip variations 
(OCV) challenges.  

2.1 RCT requirements in SiLago Design Flow 
The RCT has two types of requirements. One is common to all 

clock tree synthesis, i.e., to minimise the clock skew and maintain 
sufficient drive strength to ensure that the slew rate is not 
violated. The second set of requirements stems from synchoricity; 
it imposes two additional constraints predictability and validity. 
An RCT composed of its fragments should be predictable. The 
predictability requires that the RCT can only be composed of a 
finite set of pre-characterised fragments absorbed within the 

 
Figure 1. Example synchoros VLSI design instance 
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SiLago blocks. We discuss such a timing model in section 2.3. The 
parameters of this model factors in PVT and OCV. The RCT 
generated by abutment should also be valid, i.e., fulfil the 
technology design rules and be manufacturable.  

2.2 RCT Components in each SiLago Block 
In this sub-section, we elaborate the components of RCT that 

are absorbed within each SiLago block. These components enable 
abutment, maintain slew rate and minimise skew.  
1. Standardised Entry and Exit Points: Every SiLago block type has 
a standard entry (Hin, Vin) and exit (Hout, Vout) points for the RCT 
fragment; see Figure 3. Standard implies fixed location on the 
specific edge of SiLago block and metal layers. The entry and exit 
points of RCT fragments in neighbouring SiLago blocks abut to 
create a valid RCT. Since the neighbours can be in horizontal, 
vertical, or both dimensions, SiLago blocks need entry and exit 
points on both edges. The RCT can be distributed in top-down and 
left-right, or bottom-up and right-left. The choice of orientation 
depends on the corner at which the global clock tree (GCT) 
enters. The GCT entry point depends on the floor planning of the 
global NoCs during the syntheses from higher abstractions. 
2. Multiplexed and buffered horizontal and vertical chords: These 
components select the RCT input and output and maintain the 
slew rate. Selecting the input implies selecting the Hin or Vin, as 
shown in Figure 3. The two inputs are fed to an OR gate. Only one 
of the inputs can be a clock, and the other is set to zero when 
configuring the RCT. Selecting the output implies selecting if the 
RCT is to be propagated to the right exit (Hout), or the bottom exit 
(Vout), or both. The unselected exit is grounded using two AND 
gates. Depending on the two AND gates' configuration, the 
variants of chord delay, TRCT_chord, is selected; see Figure 3. These 
gates also serve as the drivers to maintain the clock's slew. 
3. Programmable Delay Line: The programmable delay line adjusts 
the delay to the local clock tree (LCT) entry point; see Figure 3. 

The delay is adjusted according to the SiLago block's position in a 
region instance with respect to where the GCT enters the region. 
The objective of adjusting the delay is to minimise the skew of the 
clock's arrival at the LCT entry points. The delay is adjusted by 
selecting a tap, with index i, in the delay line. The selected tap i 
introduces a delay ttap_i between the SiLago Block's RCT entry 
point, i.e., Hin or Vin, and the LCT entry point. 

The RCT fragments' design in terms of the pieces described 
above is identical for all SiLago block types. However, the 
dimension of the three components depends on the type of SiLago 
block. The entry and exit points of the SiLago blocks are like the 
Lego studs. These points' positions are a standard offset from top-
left and bottom-right corners, irrespective of the type of SiLago 
blocks. The standard position makes it possible to abut SiLago 
blocks of different types. By having standardised offsets from the 
corners, the spatial composition of blocks becomes feasible. 

The length of the horizontal and vertical chords is adjusted to 
match specific SiLago block types' dimensions. The drive strength 
of the three gates used for configuring the propagation path is also 
dimensioned to match their respective loads. These loads are not 
arbitrary but known a priori. This is true because a SiLago block 
can have a finite number and types of neighbours. When a SiLago 
block type is designed, its connection to other possible block types 
is characterised. The characterisation ensures that the electrical 
connection between them is valid. 

2.3 Regional Clock Tree Delay Model 
The RCT delay model enables post-layout accurate 

predictability of electrical and temporal properties of an arbitrary 
RCT created by the abutment of its fragments. This model is used 
to decide how large a region instance can be and select the taps in 
the delay line to balance each SiLago block's skew. 

The delay model captures the RCT latency from the entry 
point of a region instance to the LCT entry point of the SiLago 
blocks in a region. Figure 4 presents an example of how the delay 
model is applied. It illustrates a region instance with 8 SiLago 
blocks, where the RCT entry point is on the top left corner. Each 
block will have a unique RCT arrival time, notated as TLCT_x,i. The 
subscript x identifies the block id, and subscript i identifies the 
programmable delay line's selected tap index. The programmable 
line aims to make TLCT_x,i, as equal as possible for every block x. 
The TLCT_x,i has two components, EQ. 2: 
a.  One is the propagation delay in the intervening RCT chords 

between the RCT entry point in a region instance and the entry 
to a SiLago block x. This delay is denoted by Tprop_x, where x is 
SiLago block id (EQ. 1). In Figure 4, x=7 and Tprop,x is shown as 
the thick red line, colouring the chords in blocks 1, 5, and 6. 

b. The second component is the delay imposed on the RCT by the 
delay line in the SiLago block x. This delay is represented by 
ttap_i,x, where i is the tap index. In Figure 4 this delay component 
is shown as ttap_i,7 in a thick golden line in block 7. The ttap_i,x is 
further divided into three sub-components shown in Figure 3. 

 
Figure 2. Local & regional clocks and timing paths. 

 
Figure 3. Components of RCT fragment and their notations. 

𝑇𝑝𝑟𝑜𝑝_𝑥 = ∑ 𝑇𝑅𝐶𝑇_𝑐ℎ𝑜𝑟𝑑

𝑛𝑜𝑑𝑒𝑠 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑜 𝑥

 EQ. 1 

𝑇𝐿𝐶𝑇_𝑥,𝑖  =  𝑇𝑝𝑟𝑜𝑝_𝑥 + 𝑡𝑡𝑎𝑝_𝑖,𝑥 EQ. 2 

 
 

 
 

          

    

  

  

  

 
 

 
 

          

    

  

  

  

   

                          

           

                      
                       

                        
     

                    
     

SiLago Block Delay Notation
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The SiLago design flow involves two phases. In the first, the 
blocks are designed, verified, and characterised as a one-time 
effort. A partial list of outputs that are produced in this phase are: 
1. The RCT fragments are analysed and characterised to extract 

the parameters used in the RCT timing model presented above. 
2. The fragments of regional NoCs are also analysed and 

characterised in a manner like the RCT fragments. Examples of 
these fragments are shown as ar and br in Figure 2. The timing 
analysis for such inter-SiLago flop-to-flop timing paths is done 
for each SiLago block type in conjunction with valid neighbour 
block types. Such timing analysis is used to characterise the wire 
fragments' delays. The validation of such timing paths cannot 
be done until RCT is created when a design is assembled in 
terms of the SiLago blocks during the second phase. The inter-
SiLago timing path example shown in Figure 2 spans to the 
nearest neighbours. In practice, such timing paths can exist in a 
small contiguous cluster of SiLago blocks in a region instance. 
The size of the cluster depends on the NoC that is used to 
connect the SiLago blocks. The SiLago blocks do not 
communicate over ad hoc wires but over a structured NoC based 
interconnect, for example [2]. 

3. The intra-SiLago, i.e., local timing paths (flop-to-flop), are 
analysed by the static timing analysis (STA) that is part of the 
standard cell-based design flow. Examples of these paths are 
shown as al, bl, and cl in Figure 2; the subscript l stands for local.  

In the second phase, the library of characterised and abutment 
ready SiLago blocks are used to create more complex designs for 
algorithms, applications, and systems. This is automated by the 
higher abstraction synthesis tools. In this phase, the inter-SiLago 
block timing paths are analysed. The RCT timing model plays a 
central role in this higher abstraction timing analysis by 
predicting the skew between the RCT entry points into each 
SiLago block in a region instance. This skew is the only unknown 
when composing a design in terms of the SiLago blocks. An 
algorithm, presented in the next sub-section 2.4, is used to 
minimise the skew. Knowing a) the clock period, b) the delay over 
the inter-SiLago regional NoC timing paths from its pre-
characterised fragments like ar and br and delays in the flops, and 
c) the skew predicted by the RCT timing model, it is possible to 
validate the inter-SiLago timing paths as timing clean. The RCT 
model can predict the skew as accurately as the static timing 
analysis. This claim is validated in sec. 3.4. The end-user never 
uses the RCT timing model explicitly. However, it is used by the 
higher abstraction synthesis tools to a) decide the taps in the delay 
lines, b) validate the inter-SiLago timing paths, and c) the largest 
feasible size of region instance. The RCT timing components' 
characterisation and the inter-SiLago timing paths are like the 
delay properties of standard cells and wires in a specific 
technology. The end-user does not explicitly use these properties, 
but they empower logic and physical synthesis tools. 

2.4 Minimisation of the skew 
Once a region instance is composed in terms of SiLago blocks 

by the higher abstraction synthesis tools, the next step is to select 
the tap delay in each SiLago block. The problem of tap selection is 
formulated as an optimisation problem: what is the assignment of 

the tap index in each node x, that would minimise the absolute 
difference among TLCT_x,i. Node IDs are 1…N, and tap indices are 
1…M. The first tap, i=1, imposes the minimum delay, and the last 
tap, i=M, the maximum delay. The ID of the node where the RCT 
enters a region instance is by convention 1 and has Tprop_1=0. The 
node ID N is reserved for the furthest node, i.e., Tprop_N= max 
(Tprop_x). The tap index in node N is fixed to ttap_1 to have minimal 
latency, TLCT_N,1. The aim is to minimise the insertion delay to the 
blocks and the number of buffers used in each delay line. The cost 
function, L in EQ. 3, quantifies the mean of the absolute 
differences between TLCT_x,i and TLCT_N,1, where x=1…N-1. 

L's minimality can only be guaranteed if each term is minimal 
since L is a sum of absolutes. The minimality can be guaranteed 
by visiting each of the 1…N-1 nodes and sweeping through the M 
taps to find the index that gives the minimal absolute difference, 
with respect to the reference node N, annotated I in EQ. 4. To 
conclude, L is minimal if we replace TLCT_x,i with TLCT_x,k where 
k=I(x). The complexity of this algorithm is 𝒪(𝑁 ⋅ 𝑀), as is evident 
from EQ. 3. 

𝐼 = {𝑖 |1 ≤ 𝑖 ≤ 𝑀                  𝐴𝑁𝐷  
              1 ≤ 𝑥 ≤ 𝑁 − 1         𝐴𝑁𝐷 
𝑇𝐿𝐶𝑇_𝑥,𝑖 − 𝑇𝐿𝐶𝑇_𝑁,1 = min

1≤𝑗≤𝑀,𝑗≠𝑖
(𝑇𝐿𝐶𝑇𝑥 ,𝑗 − 𝑇𝐿𝐶𝑇𝑁,1)} 

EQ. 4 

2.5 Maximum feasible size of region-instances 
The RCT model introduced in section 2.3 is also used to decide 

the region instance's maximum size. The number of taps and their 
ability to compensate for the monotonous increase in Tnat_x 
dictates the maximum size of region instances allowed. This is 
formalised in EQ. 5. The value of x that fulfils this inequality 
decides the furthest node, N, from the RCT entry point and 
thereby the maximum feasible dimension of the region instance. 

2.6 On-Chip Variations 
On-chip variations (OCV) is a well-known challenge that 

impacts timing.  There are three main approaches in use today for 
the standard cell based design flows [3], [4]: a) single deration per 
PVT (Process, Voltage, and Temperature) point, b) advanced OCV, 
and c) parametric OCV. All these methods rely on standard cell 

 
Figure 4. RCT Delay Model components in an example region instance. 
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libraries to define how much variation can be expected during 
manufacturing. The EDA tools take the variations into account 
during the STA to ensure that each timing path is designed and 
validated with sufficient margins to ensure no violations can 
occur in any process or operating point corner. 

The synchoros VLSI methodology implicitly factors in OCV. 
The incorporation happens when the SiLago blocks are designed, 
analysed, and characterised using the OCV aware standard cell 
based design flows. The SiLago blocks are characterised at all 
delay corners to a) ensure that all its local intra-SiLago timing 
paths are timing clean in these corners and b) extract timing 
parameters for the fragments of wires that abut to create inter-
SiLago wires; when a SiLago based design is assembled. These 
timing parameters are bounded by given OCV ranges to ensure 
their validity in the various corners. As a result, the OCV 
ruggedised parameters are used for the RCT timing models and 
the inter-SiLago NoC fragments when doing the inter-SiLago 
timing path analysis to ensure that all the timing paths are 
analysed to the same standard as the conventional EDA flows, 
albeit at a higher abstraction. 

3 Experiments and results 
This section presents the experimental results to validate the 

claim that the RCT generated by abutment is: a) valid, i.e., it is 
guaranteed to be timing and design rule check (DRC) clean, and 
b) predictable, i.e., properties of the generated RCT are known 
with post layout accuracy without having to do STA at the 
physical level, as it is done in the standard cells design flow.  

Three experiments were performed to validate these claims. 
The first experiment reports the RCT delay model results and its 
properties, as discussed in sec. 2.3. The second experiment uses 
the RCT delay model to predict the properties of the RCT. The 
predicted values are validated against the values analysed by 
commercial EDA tools. This experiment's side effect is that RCT 
created by abutment is validated to be timing and DRC clean by 
the commercial EDA tools. We also demonstrate that the 
predictability is scalable. The third experiment benchmarks the 
RCT properties generated by abutment against a functionally 
equivalent RCT generated by the EDA tools. The results are used 
to prove that the synchoricity and abutment have negligible 
overheads in terms of typical cost metrics for clock tree: area, wire 
length, switching capacitance, skew, and average trunk slew.  

3.1 Experimental setup  
All experiments have been done in a 40 nm technology node, 

and the results have been validated using commercial EDA tools. 
These tools have been used for: a) to implement synchoros SiLago 
blocks, including the RCT fragments. b) validating the claims that 
the RCT generated by abutment are predictable, and timing and 
DRC clean and c) demonstrate that the benefits of synchoricity 
and abutment do not degrade the quality of RCT. EDA tools for 
points b and c above are solely used for research purposes to 
validate the claims and are not part of the regular synchoros 
design flow.  

The proposed RCT by abutment scheme and the state-of-the-
art hierarchical EDA flow is applied to the same experimental 
design. The design is a composite region instance of two different 

types of SiLago blocks. The one called Dynamically 
Reconfigurable Resource Array (DRRA) [5], and a second fabric 
called Distributed Memory Architecture (DiMArch) [6], Figure 5. 

The region instance has 24 SiLago blocks that correspond to 
~1.5 million NAND gates and 16 kBs of SRAM or 4 mm2 in 40 nm 
node. The design's size is compatible with the expected typical size 
of synchronous region instance, for which the RCT is generated 
by abutment. To establish the method's scalability, we also tested 
a ~4 mil. gate design and show that the predictability is unaffected. 

3.2 RCT Model  
An RCT fragment with 32 taps in the delay line was 

incorporated into the DRRA and DiMArch SiLago blocks. These 
blocks were hardened to be synchoros and abutment ready. The 
RCT model parameters were extracted using static timing analysis 
(STA) from the post layout data and factoring in PVT and OCV. 
We remind this STA is a one-time engineering effort to 
characterise SiLago blocks and not seen by the end-user. The 
SiLago blocks on the edges have slightly different values of 
TRCT_chord compared to the ones in the middle. These differences 
exist because there are minor differences in the interconnect and 
the layout of them. The 32 taps in the delay line can insert delays 
from 1.07 ns to 6.2 ns, with a step size of 0.16ns. The maximum 
size of the region that can be supported is 9 columns. A delay line 
with more taps or a larger step size can support larger regions. 
The RCT timing model is based on the extraction of timing using 
EDA tools that factor in PVT variations.  

3.3 Predictability, Validity, and Scalability  
Here, we describe the experiments that we did to establish that 

the RCT created by abutment is predictable and valid. The RCT 
property that we predict is the arrival times of RCT at each LCT 
entry point, the TLCT x,i. We measure this property using two 
methods. The first method uses the RCT delay model and the 
higher abstraction timing analysis to analyse the inter-SiLago 
timing paths in terms of pre-designed and pre-characterised wire 
fragments that are absorbed in the SiLago blocks. This higher 
abstraction timing analysis for RCT is expressed as EQ. 2. The 
second method is to use EDA tools to measure the same delay. The 
results of these two methods are compared to establish the 
accuracy of the RCT model's prediction with EDA tools-based 
measurements as the benchmark. This experiment's side-effect is 
that the RCT created by abutment gets certified as being timing 
and DRC clean by the commercial EDA's analysis tools.  

The worst-case skew, the difference between two LCT entry 
points, is 129 ps. This difference is small enough to be easily 
absorbed by the slack margin with which the SiLago blocks are 
synthesised. We remind here that the SiLago blocks do not 

 
Figure 5. The experimental region-instance. 

    

   
   

       

   
   

    

   
   

       

   
   

    

   
   

       

   
   

    

   
   

       

   
   

    

   
   

       

   
   

    

   
   

       

   
   

    

   
   

       

   
   

    

   
   

       

   
   

    

   
   

    

   
   

    

   
   

    

   
   

    

   
   

    

   
   

    

   
   

    

   
   

                            

         

    

      

 
 

 
 

 
 

 
 

 

     

    

    
      



 

communicate over ad-hoc wires synthesised for every design 
instance and iteration, as is the case with standard cells-based 
designs. The inter-SiLago communication in a region instance 
happens over regional NoCs. The RCT delay model's predicted 
values are almost identical to the one analysed by the EDA tools. 
The worst-case error compared to the EDA tools is 1.5 ps, and the 
RMS is 0.0005ps. This difference comes from the fact that our 
experimental setup does not have an infinite ground plane. This 
results in different design parts experiencing different coupling 
with long signals, like the reset and the ground plane. The result 
proves that the RCT delay model is sufficiently accurate that the 
higher abstraction synthesis tools do not need to do static timing 
analysis at the physical design level. To establish the RCT's 
scalability with increasing complexity, we experiment with a 
larger design of 20 columns. The predictability of the larger design 
was as good as the one for the smaller design. 

3.4 SiLago RCT compared to EDA RCT 
Here we present results that show RCT generated by abutment 

has comparable cost metrics to an ad-hoc RCT generated by EDA 
tools. To generate a functionally equivalent RCT by commercial 
EDS tools, we harden each DRRA cell as a leaf node. This 
hardening phase includes the synthesis of the local clock tree. The 
next step is to floorplan the design in terms of leaf nodes and 
synthesise the ad-hoc wires to connect and clock these leaf nodes. 
The clock that is synthesised in this step to drive the local clock 
trees is functionally equivalent to the RCT generated by abutment. 

The commercial EDA tools then analysed both designs to 
compare the two functionally equivalent RCTs' properties. The 
results are shown in Table 1. As can be seen, the values of critical 
parameters are comparable. The standard cell area refers to 
standard cells dedicated to the RCT components shown in Figure 
3, including MUX/AND/OR gates. Do note that the RCT compared 
to the SiLago block's LCT capacitance takes up ~2.5% of the total. 
The EDA generated RCT introduces a capacitance overhead of 
0.4%. The overhead as a percentage of the total clock distribution 
(RCT + Local Clock Tree-LCT) is ~2%.  

The SiLago RCT achieves a comparable arrival time of RCT at 
LCT entry points compared to the commercial EDA RCT. The 
SiLago RCT has a slightly better slew rate at LCT entry. The 
average and absolute difference in slew at different points in 
trunks for the entire (RCT+LCT) clock tree is also comparable and 
within the limits of the technology rules. The above experiment 
and the reported results establish that RCT generated by abutment 
has comparable quality as the one generated by the commercial 
EDA tools. The difference is that the EDA tool generated RCT is 
ad-hoc and synthesised anew for each design instance and 

iteration. Notice that the EDA RCT's irregularity in Figure 6 
resulting from the attempt to factor and reuse the buffers. In 
contrast, the synchoros RCT is regular. The ad-hoc nature of the 
EDA RCT and its irregularity violates the requirements that the 
synchoros design style places on RCT, as discussed in section 2.  

The synchoros RCT by abutment is regular, as shown in Figure 
6b. It has three main branches corresponding to two DRRA and 
one DiMArch rows. Each branch has eight leaf nodes, and each 
leaf node has the same RCT structure. The regularity of the SiLago 
RCT enables abutment. Its stable structure, together with its 
absorption in the SiLago blocks as a pre-synthesised and 
characterised structure, enables predictability. The proposed 
method's main drawback is the clock latency, which is higher than 
the EDA RCT, as shown in Figure 6. The increased variation 
implied by the higher latency is factored in the PVT variations. 
The higher latency is defended by its potential to improve design 
productivity by enabling a predictable RCT and a composition by 
abutment scheme. We observe that when we transitioned from 
full-custom to standard-cell based designs, we accepted significant 
overheads in the interest of improved design productivity. 

3.5 Analysis of Experimental Results 
The experiments and their results presented in the previous 

sub-sections prove the following: i) the feasibility of generating 
RCT by abutment, ii) the generated RCT is a valid VLSI design, iii) 
the generated RCT is predictable, iv) the composition by abutment 
is scalable with complexity and v) the RCT generated by abutment 
has negligible overhead when compared to functionally 
equivalent RCT generated by the state-of-the-art design flow.  

The key benefit of the composition of RCT by abutment is that 
it contributes to raising the physical design level to RTL; for both 
logic and wires. This makes the VLSI design space exponentially 
smaller, composable and predictable to enable automated 
synthesis from higher abstractions, as argued in [1]. 

4 State of the Art 
The CTS (Clock Tree Synthesis) has been researched since the 

earliest days of VLSI. The CTS research's main objective has been 
to optimise the clock tree's cost metrics, i.e., smaller switching 
capacitance, minimising skew, maintaining an edge, etc.[7], [8]. 
These approaches are based on sophisticated heuristic algorithms. 

 
Figure 6. EDA generated RCT vs SiLago RCT 

TABLE 1 

EDA RCT VS SILAGO RCT 

 SiLago RCT EDA RCT % Change 

Wire Length [μm] 422932.1 415263.9 1.8 % 

Standard Cell Area [μm2] 19472.6 18276.5 6.5 % 

Average Trunk Slew [ns] 0.062 0.090 31.1 % 

Total Capacitance [pf] 129.9 127.2 2.1 % 

Avg. Diff. in Arrival Time 
(LCT Entry Point) [ns] 

0.04299 0.0337 27.6% 
                              

         

          

        
   

    

      

                           

   

            

                  

          

     

      

    



 

Most of these methods are based on the van Ginneken dynamic 
programming algorithm for buffer insertion and sizing, and the 
delay model used is the Elmore delay model [9]. An excellent 
survey of CTS techniques is presented in [10]. In [7], [11] and [12] 
the authors use a post-clock-tree-synthesis optimization. The 
proposed methods optimise the clock tree by altering an already 
synthesised tree. In contrast, our goal is to balance the clock's 
arrival time at the local clock trees' source points. 

The key difference between the research proposed in this 
paper and the ad hoc CTS research reviewed above is that in 
synchoros VLSI design style, composing a larger design in terms 
of SiLago blocks does not involve creating new wires of any type, 
including the clock. Whereas in the state-of-the-art, clock wires 
and buffers are synthesised as part of physical synthesis as a post 
logic synthesis step. In many other respects, the RCT generation 
method proposed in this paper does not compete directly with the 
research reviewed above; they are complementary. What we 
propose is an alternative to the clock tree generation at a higher 
level, which has relatively insignificant capacitance but 
profoundly affects the engineering cost and predictability. 

CTS research has also focussed on regular topologies of clock 
trees like H-tree and Mesh clock structures [9], [13]. The 
regularity of these structures makes them seem a good match for 
the synchoros VLSI design style. These structures do not fulfil the 
requirements of creating RCT by abutment. H-Tree is a 
hierarchical structure, and its depth would depend on the size of 
the region instance. For this reason, it is absorbing an H-Tree as 
RCT fragments and being able to create an arbitrary H-Tree by 
abutment that is dependent on the size and shape of the region 
instance is not feasible. Mesh-based clock tree poses a challenge 
in terms of the predictability requirement. Since the clock tree 
mesh creates an equipotential surface, it creates cyclic graphs that 
are impossible to analyse with STA [9], [13]. This is an even bigger 
problem for the RCT by abutment scheme because it requires the 
iron-clad timing models to predict the RCT properties with 
sufficient accuracy. The standardised entry points and 
propagation path of the SiLago RCT make it possible to have a 
trustworthy timing model. 

Like synchoros VLSI designs, FPGAs are regular structures and 
naturally invite comparison of their clock tree schemes. The 
fundamental difference is that the clock tree routing is pre-
designed for each FPGA. The FPGA wires and LUTs can be 
configured differently, but the silicon will not change. In contrast, 
depending on functionality and constraints, the higher abstraction 
syntheses will create region instances of different size, aspect 
ratio, and entry points. This will result in different RCT 
dimensions and topology. All the wires in synchoros VLSI design 
are regular and structured but can be connected and organised in 
various ways to create endless variations of structures.  

Further, FPGAs do require an STA as a post-synthesis step. In 
synchoros VLSI design, the regions are pre-characterised to work 
up to a clock speed, as long as the RCT infrastructure can deliver 
the clock to the LCT entry points inside a known skew margin. 
This is why the synchoros VLSI design requires no physical level 
STA. The region instances of arbitrary size and domain-specific 
functionality are guaranteed to be correct-by-construction. 

Some methods have been proposed for post-fabrication clock 
deskewing [14], [15]. These methods use configurable buffers and 
delay lines to correct the skew after fabrication and are still 
designed ad-hoc for each design. Our method's innovation is the 
structured design of the RCT that makes it predictable and not the 
use of the delay line. The structured and predictable design 
enables higher-level synthesis, as argued in [1] 

5 Conclusion and Future Work 
We have presented a regional clock tree generation method 

based on abutting fragments of RCT that are absorbed SiLago 
blocks as a one-time effort. We are working on several 
enhancements to the RCT method and the overall synchoros VLSI 
design framework. The programmable delay line is constructed 
from qualified standard cells, and its atomic delay decides the 
resolution to which we can minimise the skew. We are working 
on a more advanced programmable delay line that will allow a 
finer adjustment of delay that would be needed for higher 
frequencies. In this improved delay line, the number of taps would 
increase logarithmically with the delay. Such a delay line will be 
constructed with weighted positional taps much like a fixed-point 
number. We are also in the process of making the delay of each 
tap in the delay line adaptive [16], [17] to make the design more 
robust and enable dynamic voltage frequency scaling.  
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