
Clock Tree Generation by Abutment in Synchoros VLSI Design
Dimitrios Stathis*, Panagiotis Chaourani*, Syed M. A. H. Jafri*, Ahmed Hemani*

 * KTH Royal Institute of Technology, Stockholm, Sweden (e-mail: stathis, pancha, jafri, hemani@kth.se)

ABSTRACT
Synchoros VLSI design style has been proposed as an alternative
to standard cell-based design. Standard cells are replaced by
synchoros, large grain, VLSI design objects called SiLago (Silicon
Lego) blocks. This new design style eliminates the need to
synthesise ad hoc wires of any type: functional and infrastructural.
SiLago blocks are organised into region instances.
Communication among SiLago blocks in a region instance is
synchronous and happens over regional NoCs whose fragments
are also absorbed into SiLago blocks. Consequently, the regional
NoCs get created by abutment of SiLago blocks. The clock tree that
is used in a region is called regional clock tree (RCT). Synchoros
design style requires that the RCT, like the regional NoCs, be
created by abutting its fragments that are absorbed within the
SiLago blocks. The RCT created by abutment is not an ad-hoc
clock tree but a structured and predictable design with known cost
metrics. The design of such an RCT is the focus of this paper. The
scheme is scalable, and we demonstrate that the proposed RCT
can be generated for valid VLSI designs of ~1.5 million gates. The
RCT created by abutment is correct by construction, and its
properties are predictable. We have validated the generated RCTs
with static timing analysis to validate the correct-by-construction
claim. Finally, we show that the cost metrics of the SiLago RCT is
comparable to the one generated by commercial EDA tools.

KEYWORDS
CGRA, CTS, EDA, SiLago, VLSI Design, Synchoricity

1 Introduction
This paper presents a clock tree generation scheme for a novel

synchoros VLSI design framework. Synchoros VLSI design was
proposed as an alternative to the standard cell-based VLSI design
[1]. The word synchoros is derived from the Greek word for space
– χώρος (khôros). Synchoricity is analogous to synchronicity1. In
synchronicity, time is uniformly discretised with clock ticks to
simplify the temporal and logical composition. In synchoricity,
space is uniformly discretised with a virtual grid to simplify the
spatial and electrical composition.

In standard cells based design, the cells themselves are pre-
designed, but their placement and wires needed to connect, clock,
power, and reset them must be synthesised anew in an ad-hoc
fashion. This makes the cost metrics unpredictable for synthesis
from higher abstractions. In synchoros design style, all wires –
functional and infrastructural – are absorbed in SiLago (Silicon
Lego) blocks. SiLago blocks replace standard cells as atomic
building blocks. All inter-SiLago block wires are bought to the
periphery at the right place and right metal layer to enable

1 Synchoricity is a different concept from synchronicity, and not a typo. We highlight
the difference between the two words by underlining the n in synchronicity.

composition by abutting valid neighbours. This eliminates the
need to synthesise ad-hoc wires and makes the cost-metrics
predictable as long as the mapping of functionality to SiLago
blocks and its topological arrangement is known. This paper
focuses on how one category of wire – the regional clock tree
(RCT) – is absorbed in the SiLago block, and a valid and
predictable RCT gets created by abutment. In synchoros VLSI
design style, there are three levels of hierarchical objects: Local,
Regional and Global.

SiLago blocks are at the lowest level of the hierarchy. All wires
in SiLago blocks, including the Local Clock Tree (LCT), are ad-
hoc and synthesised by EDA tools. Regions are composed of
SiLago blocks of the same type, Figure 1. Inter-SiLago block
communication in a region happens over regional NOCs, whose
wires are also absorbed within the SiLago blocks. The RCT drives
the LCTs in each SiLago block. The RCT fragments and ancillary
circuit to maintain slew and minimise skew are also absorbed in
each SiLago block. As stated, this is the focus of this paper. The
RCT must maintain synchronicity amongst SiLago blocks in a
region, as shown in Figure 2, where an inter-SiLago block timing
path created by a regional NoC is clocked by two local clocks.
Region instances communicate with each other over Global
NOCs, also composed in terms of SiLago blocks [1]; see Figure 1.
Global NOCs have their own Global Clock Tree (GCT).

2 RCT by abutment in synchoros VLSI Design
This section presents the requirements imposed by

synchoricity on the RCT and how these requirements are fulfilled,
including creating a valid and predictable design that factors in
process, voltage, and temperature (PVT) and On-Chip variations
(OCV) challenges.

2.1 RCT requirements in SiLago Design Flow
The RCT has two types of requirements. One is common to all

clock tree synthesis, i.e., to minimise the clock skew and maintain
sufficient drive strength to ensure that the slew rate is not
violated. The second set of requirements stems from synchoricity;
it imposes two additional constraints predictability and validity.
An RCT composed of its fragments should be predictable. The
predictability requires that the RCT can only be composed of a
finite set of pre-characterised fragments absorbed within the

Figure 1. Example synchoros VLSI design instance

Three infrastructural

region instances

PLL RISCV

GCT

Global Clock Tree

RCT

Regional Clock Tree

LCT

Local Clock Tree

T
h

re
e

 fu
n
c
tio

n
a

l

re
g
io

n
 in

s
ta

n
c
e

s

Global NOC

LCT LCT LCT LCT LCT

LCT LCTLCT LCTLCT
LCT LCT LCT

LCT LCT LCT

LCT LCTLCT LCTLCT

LCT LCT

LCTLCT

LCT LCT

LCT

LCT

Chip Boundary

SiLago blocks. We discuss such a timing model in section 2.3. The
parameters of this model factors in PVT and OCV. The RCT
generated by abutment should also be valid, i.e., fulfil the
technology design rules and be manufacturable.

2.2 RCT Components in each SiLago Block
In this sub-section, we elaborate the components of RCT that

are absorbed within each SiLago block. These components enable
abutment, maintain slew rate and minimise skew.
1. Standardised Entry and Exit Points: Every SiLago block type has
a standard entry (Hin, Vin) and exit (Hout, Vout) points for the RCT
fragment; see Figure 3. Standard implies fixed location on the
specific edge of SiLago block and metal layers. The entry and exit
points of RCT fragments in neighbouring SiLago blocks abut to
create a valid RCT. Since the neighbours can be in horizontal,
vertical, or both dimensions, SiLago blocks need entry and exit
points on both edges. The RCT can be distributed in top-down and
left-right, or bottom-up and right-left. The choice of orientation
depends on the corner at which the global clock tree (GCT)
enters. The GCT entry point depends on the floor planning of the
global NoCs during the syntheses from higher abstractions.
2. Multiplexed and buffered horizontal and vertical chords: These
components select the RCT input and output and maintain the
slew rate. Selecting the input implies selecting the Hin or Vin, as
shown in Figure 3. The two inputs are fed to an OR gate. Only one
of the inputs can be a clock, and the other is set to zero when
configuring the RCT. Selecting the output implies selecting if the
RCT is to be propagated to the right exit (Hout), or the bottom exit
(Vout), or both. The unselected exit is grounded using two AND
gates. Depending on the two AND gates' configuration, the
variants of chord delay, TRCT_chord, is selected; see Figure 3. These
gates also serve as the drivers to maintain the clock's slew.
3. Programmable Delay Line: The programmable delay line adjusts
the delay to the local clock tree (LCT) entry point; see Figure 3.

The delay is adjusted according to the SiLago block's position in a
region instance with respect to where the GCT enters the region.
The objective of adjusting the delay is to minimise the skew of the
clock's arrival at the LCT entry points. The delay is adjusted by
selecting a tap, with index i, in the delay line. The selected tap i
introduces a delay ttap_i between the SiLago Block's RCT entry
point, i.e., Hin or Vin, and the LCT entry point.

The RCT fragments' design in terms of the pieces described
above is identical for all SiLago block types. However, the
dimension of the three components depends on the type of SiLago
block. The entry and exit points of the SiLago blocks are like the
Lego studs. These points' positions are a standard offset from top-
left and bottom-right corners, irrespective of the type of SiLago
blocks. The standard position makes it possible to abut SiLago
blocks of different types. By having standardised offsets from the
corners, the spatial composition of blocks becomes feasible.

The length of the horizontal and vertical chords is adjusted to
match specific SiLago block types' dimensions. The drive strength
of the three gates used for configuring the propagation path is also
dimensioned to match their respective loads. These loads are not
arbitrary but known a priori. This is true because a SiLago block
can have a finite number and types of neighbours. When a SiLago
block type is designed, its connection to other possible block types
is characterised. The characterisation ensures that the electrical
connection between them is valid.

2.3 Regional Clock Tree Delay Model
The RCT delay model enables post-layout accurate

predictability of electrical and temporal properties of an arbitrary
RCT created by the abutment of its fragments. This model is used
to decide how large a region instance can be and select the taps in
the delay line to balance each SiLago block's skew.

The delay model captures the RCT latency from the entry
point of a region instance to the LCT entry point of the SiLago
blocks in a region. Figure 4 presents an example of how the delay
model is applied. It illustrates a region instance with 8 SiLago
blocks, where the RCT entry point is on the top left corner. Each
block will have a unique RCT arrival time, notated as TLCT_x,i. The
subscript x identifies the block id, and subscript i identifies the
programmable delay line's selected tap index. The programmable
line aims to make TLCT_x,i, as equal as possible for every block x.
The TLCT_x,i has two components, EQ. 2:
a. One is the propagation delay in the intervening RCT chords

between the RCT entry point in a region instance and the entry
to a SiLago block x. This delay is denoted by Tprop_x, where x is
SiLago block id (EQ. 1). In Figure 4, x=7 and Tprop,x is shown as
the thick red line, colouring the chords in blocks 1, 5, and 6.

b. The second component is the delay imposed on the RCT by the
delay line in the SiLago block x. This delay is represented by
ttap_i,x, where i is the tap index. In Figure 4 this delay component
is shown as ttap_i,7 in a thick golden line in block 7. The ttap_i,x is
further divided into three sub-components shown in Figure 3.

Figure 2. Local & regional clocks and timing paths.

Figure 3. Components of RCT fragment and their notations.

𝑇𝑝𝑟𝑜𝑝_𝑥 = ∑ 𝑇𝑅𝐶𝑇_𝑐ℎ𝑜𝑟𝑑

𝑛𝑜𝑑𝑒𝑠 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑜 𝑥

 EQ. 1

𝑇𝐿𝐶𝑇_𝑥,𝑖 = 𝑇𝑝𝑟𝑜𝑝_𝑥 + 𝑡𝑡𝑎𝑝_𝑖,𝑥 EQ. 2

SiLago Block Delay Notation

TRCT_chord TV_to_V, TV_to_H,TH_to_H, TH_to_V

Four variants of delay through

horizontal and vertical chords

TV_to_DL,

TH_to_DL

Delay of the wire connecting the Vin or

Hin and the Delay Line Entry Point

TDL_i

Delay imposed by delay line

depending on the index i

Tmux_i

Propagation delay through the mux

depending on the i index

ttap_i

Delay between the Vin or Hin and the

LCT Entry Point associated with the

selected tap i of the Delay Line

ttap_i = [TH_to_DL | Tv_to_DL] +

TDL_i + Tmux_i

Ttap

Set of delays associated with taps in

the Delay Line

{ttap_0,…, ttap_i,…, ttap_(M-1)}

In each node, one and only one tap ttap_i

Ttap is selected by configuring the index i

D
e

la
y

L
in

e

Local Clock

Tree (LCT)

0|1

0|1.

Vin
Hin

Hout

Vout

Horizontal Chord

Vertical

Chord

LCT Entry

Point

Delay Line

Entry Point

T
D

L
,i

D
e

la
y
 L

in
e

(D
L

)tap1

tap2

tapM

tap3

T
m

u
x

i

The SiLago design flow involves two phases. In the first, the
blocks are designed, verified, and characterised as a one-time
effort. A partial list of outputs that are produced in this phase are:
1. The RCT fragments are analysed and characterised to extract

the parameters used in the RCT timing model presented above.
2. The fragments of regional NoCs are also analysed and

characterised in a manner like the RCT fragments. Examples of
these fragments are shown as ar and br in Figure 2. The timing
analysis for such inter-SiLago flop-to-flop timing paths is done
for each SiLago block type in conjunction with valid neighbour
block types. Such timing analysis is used to characterise the wire
fragments' delays. The validation of such timing paths cannot
be done until RCT is created when a design is assembled in
terms of the SiLago blocks during the second phase. The inter-
SiLago timing path example shown in Figure 2 spans to the
nearest neighbours. In practice, such timing paths can exist in a
small contiguous cluster of SiLago blocks in a region instance.
The size of the cluster depends on the NoC that is used to
connect the SiLago blocks. The SiLago blocks do not
communicate over ad hoc wires but over a structured NoC based
interconnect, for example [2].

3. The intra-SiLago, i.e., local timing paths (flop-to-flop), are
analysed by the static timing analysis (STA) that is part of the
standard cell-based design flow. Examples of these paths are
shown as al, bl, and cl in Figure 2; the subscript l stands for local.

In the second phase, the library of characterised and abutment
ready SiLago blocks are used to create more complex designs for
algorithms, applications, and systems. This is automated by the
higher abstraction synthesis tools. In this phase, the inter-SiLago
block timing paths are analysed. The RCT timing model plays a
central role in this higher abstraction timing analysis by
predicting the skew between the RCT entry points into each
SiLago block in a region instance. This skew is the only unknown
when composing a design in terms of the SiLago blocks. An
algorithm, presented in the next sub-section 2.4, is used to
minimise the skew. Knowing a) the clock period, b) the delay over
the inter-SiLago regional NoC timing paths from its pre-
characterised fragments like ar and br and delays in the flops, and
c) the skew predicted by the RCT timing model, it is possible to
validate the inter-SiLago timing paths as timing clean. The RCT
model can predict the skew as accurately as the static timing
analysis. This claim is validated in sec. 3.4. The end-user never
uses the RCT timing model explicitly. However, it is used by the
higher abstraction synthesis tools to a) decide the taps in the delay
lines, b) validate the inter-SiLago timing paths, and c) the largest
feasible size of region instance. The RCT timing components'
characterisation and the inter-SiLago timing paths are like the
delay properties of standard cells and wires in a specific
technology. The end-user does not explicitly use these properties,
but they empower logic and physical synthesis tools.

2.4 Minimisation of the skew
Once a region instance is composed in terms of SiLago blocks

by the higher abstraction synthesis tools, the next step is to select
the tap delay in each SiLago block. The problem of tap selection is
formulated as an optimisation problem: what is the assignment of

the tap index in each node x, that would minimise the absolute
difference among TLCT_x,i. Node IDs are 1…N, and tap indices are
1…M. The first tap, i=1, imposes the minimum delay, and the last
tap, i=M, the maximum delay. The ID of the node where the RCT
enters a region instance is by convention 1 and has Tprop_1=0. The
node ID N is reserved for the furthest node, i.e., Tprop_N= max
(Tprop_x). The tap index in node N is fixed to ttap_1 to have minimal
latency, TLCT_N,1. The aim is to minimise the insertion delay to the
blocks and the number of buffers used in each delay line. The cost
function, L in EQ. 3, quantifies the mean of the absolute
differences between TLCT_x,i and TLCT_N,1, where x=1…N-1.

L's minimality can only be guaranteed if each term is minimal
since L is a sum of absolutes. The minimality can be guaranteed
by visiting each of the 1…N-1 nodes and sweeping through the M
taps to find the index that gives the minimal absolute difference,
with respect to the reference node N, annotated I in EQ. 4. To
conclude, L is minimal if we replace TLCT_x,i with TLCT_x,k where
k=I(x). The complexity of this algorithm is 𝒪(𝑁 ⋅ 𝑀), as is evident
from EQ. 3.

𝐼 = {𝑖 |1 ≤ 𝑖 ≤ 𝑀 𝐴𝑁𝐷
 1 ≤ 𝑥 ≤ 𝑁 − 1 𝐴𝑁𝐷
𝑇𝐿𝐶𝑇_𝑥,𝑖 − 𝑇𝐿𝐶𝑇_𝑁,1 = min

1≤𝑗≤𝑀,𝑗≠𝑖
(𝑇𝐿𝐶𝑇𝑥 ,𝑗 − 𝑇𝐿𝐶𝑇𝑁,1)}

EQ. 4

2.5 Maximum feasible size of region-instances
The RCT model introduced in section 2.3 is also used to decide

the region instance's maximum size. The number of taps and their
ability to compensate for the monotonous increase in Tnat_x
dictates the maximum size of region instances allowed. This is
formalised in EQ. 5. The value of x that fulfils this inequality
decides the furthest node, N, from the RCT entry point and
thereby the maximum feasible dimension of the region instance.

2.6 On-Chip Variations
On-chip variations (OCV) is a well-known challenge that

impacts timing. There are three main approaches in use today for
the standard cell based design flows [3], [4]: a) single deration per
PVT (Process, Voltage, and Temperature) point, b) advanced OCV,
and c) parametric OCV. All these methods rely on standard cell

Figure 4. RCT Delay Model components in an example region instance.

𝐿 =
1

𝑁 − 1
 ∑ |𝑇𝐿𝐶𝑇_𝑥,𝑖 − 𝑇𝐿𝐶𝑇_𝑁,1|

𝑥=𝑁−1

𝑥=1

 EQ. 3

𝑚𝑎𝑥(𝑡𝑡𝑎𝑝_𝑖) − 𝑚𝑖𝑛(𝑡𝑡𝑎𝑝_𝑖) ≤ 𝑚𝑎𝑥(𝑇𝑛𝑎𝑡_𝑥) EQ. 5

D
e
la

y
L
in

e

LCT

0|1

0|1
LCT

0|1

0|1

D
e
la

y
L
in

e

LCT

0|1

0|1

D
e
la

y
L
in

e

LCT

0|1

0|1

D
e
la

y
L
in

e

LCT

0|1

0|1

D
e
la

y
 L

in
e

LCT

0|1

0|1

D
e
la

y
L
in

e

LCT

0|1

0|1

D
e
la

y
L
in

e

LCT

0|1

0|1

ttap_i,7

TLCT_7,i

RCT Entry Point

❶ ❷ ❸ ❹

❽❼❻❺

libraries to define how much variation can be expected during
manufacturing. The EDA tools take the variations into account
during the STA to ensure that each timing path is designed and
validated with sufficient margins to ensure no violations can
occur in any process or operating point corner.

The synchoros VLSI methodology implicitly factors in OCV.
The incorporation happens when the SiLago blocks are designed,
analysed, and characterised using the OCV aware standard cell
based design flows. The SiLago blocks are characterised at all
delay corners to a) ensure that all its local intra-SiLago timing
paths are timing clean in these corners and b) extract timing
parameters for the fragments of wires that abut to create inter-
SiLago wires; when a SiLago based design is assembled. These
timing parameters are bounded by given OCV ranges to ensure
their validity in the various corners. As a result, the OCV
ruggedised parameters are used for the RCT timing models and
the inter-SiLago NoC fragments when doing the inter-SiLago
timing path analysis to ensure that all the timing paths are
analysed to the same standard as the conventional EDA flows,
albeit at a higher abstraction.

3 Experiments and results
This section presents the experimental results to validate the

claim that the RCT generated by abutment is: a) valid, i.e., it is
guaranteed to be timing and design rule check (DRC) clean, and
b) predictable, i.e., properties of the generated RCT are known
with post layout accuracy without having to do STA at the
physical level, as it is done in the standard cells design flow.

Three experiments were performed to validate these claims.
The first experiment reports the RCT delay model results and its
properties, as discussed in sec. 2.3. The second experiment uses
the RCT delay model to predict the properties of the RCT. The
predicted values are validated against the values analysed by
commercial EDA tools. This experiment's side effect is that RCT
created by abutment is validated to be timing and DRC clean by
the commercial EDA tools. We also demonstrate that the
predictability is scalable. The third experiment benchmarks the
RCT properties generated by abutment against a functionally
equivalent RCT generated by the EDA tools. The results are used
to prove that the synchoricity and abutment have negligible
overheads in terms of typical cost metrics for clock tree: area, wire
length, switching capacitance, skew, and average trunk slew.

3.1 Experimental setup
All experiments have been done in a 40 nm technology node,

and the results have been validated using commercial EDA tools.
These tools have been used for: a) to implement synchoros SiLago
blocks, including the RCT fragments. b) validating the claims that
the RCT generated by abutment are predictable, and timing and
DRC clean and c) demonstrate that the benefits of synchoricity
and abutment do not degrade the quality of RCT. EDA tools for
points b and c above are solely used for research purposes to
validate the claims and are not part of the regular synchoros
design flow.

The proposed RCT by abutment scheme and the state-of-the-
art hierarchical EDA flow is applied to the same experimental
design. The design is a composite region instance of two different

types of SiLago blocks. The one called Dynamically
Reconfigurable Resource Array (DRRA) [5], and a second fabric
called Distributed Memory Architecture (DiMArch) [6], Figure 5.

The region instance has 24 SiLago blocks that correspond to
~1.5 million NAND gates and 16 kBs of SRAM or 4 mm2 in 40 nm
node. The design's size is compatible with the expected typical size
of synchronous region instance, for which the RCT is generated
by abutment. To establish the method's scalability, we also tested
a ~4 mil. gate design and show that the predictability is unaffected.

3.2 RCT Model
An RCT fragment with 32 taps in the delay line was

incorporated into the DRRA and DiMArch SiLago blocks. These
blocks were hardened to be synchoros and abutment ready. The
RCT model parameters were extracted using static timing analysis
(STA) from the post layout data and factoring in PVT and OCV.
We remind this STA is a one-time engineering effort to
characterise SiLago blocks and not seen by the end-user. The
SiLago blocks on the edges have slightly different values of
TRCT_chord compared to the ones in the middle. These differences
exist because there are minor differences in the interconnect and
the layout of them. The 32 taps in the delay line can insert delays
from 1.07 ns to 6.2 ns, with a step size of 0.16ns. The maximum
size of the region that can be supported is 9 columns. A delay line
with more taps or a larger step size can support larger regions.
The RCT timing model is based on the extraction of timing using
EDA tools that factor in PVT variations.

3.3 Predictability, Validity, and Scalability
Here, we describe the experiments that we did to establish that

the RCT created by abutment is predictable and valid. The RCT
property that we predict is the arrival times of RCT at each LCT
entry point, the TLCT x,i. We measure this property using two
methods. The first method uses the RCT delay model and the
higher abstraction timing analysis to analyse the inter-SiLago
timing paths in terms of pre-designed and pre-characterised wire
fragments that are absorbed in the SiLago blocks. This higher
abstraction timing analysis for RCT is expressed as EQ. 2. The
second method is to use EDA tools to measure the same delay. The
results of these two methods are compared to establish the
accuracy of the RCT model's prediction with EDA tools-based
measurements as the benchmark. This experiment's side-effect is
that the RCT created by abutment gets certified as being timing
and DRC clean by the commercial EDA's analysis tools.

The worst-case skew, the difference between two LCT entry
points, is 129 ps. This difference is small enough to be easily
absorbed by the slack margin with which the SiLago blocks are
synthesised. We remind here that the SiLago blocks do not

Figure 5. The experimental region-instance.

communicate over ad-hoc wires synthesised for every design
instance and iteration, as is the case with standard cells-based
designs. The inter-SiLago communication in a region instance
happens over regional NoCs. The RCT delay model's predicted
values are almost identical to the one analysed by the EDA tools.
The worst-case error compared to the EDA tools is 1.5 ps, and the
RMS is 0.0005ps. This difference comes from the fact that our
experimental setup does not have an infinite ground plane. This
results in different design parts experiencing different coupling
with long signals, like the reset and the ground plane. The result
proves that the RCT delay model is sufficiently accurate that the
higher abstraction synthesis tools do not need to do static timing
analysis at the physical design level. To establish the RCT's
scalability with increasing complexity, we experiment with a
larger design of 20 columns. The predictability of the larger design
was as good as the one for the smaller design.

3.4 SiLago RCT compared to EDA RCT
Here we present results that show RCT generated by abutment

has comparable cost metrics to an ad-hoc RCT generated by EDA
tools. To generate a functionally equivalent RCT by commercial
EDS tools, we harden each DRRA cell as a leaf node. This
hardening phase includes the synthesis of the local clock tree. The
next step is to floorplan the design in terms of leaf nodes and
synthesise the ad-hoc wires to connect and clock these leaf nodes.
The clock that is synthesised in this step to drive the local clock
trees is functionally equivalent to the RCT generated by abutment.

The commercial EDA tools then analysed both designs to
compare the two functionally equivalent RCTs' properties. The
results are shown in Table 1. As can be seen, the values of critical
parameters are comparable. The standard cell area refers to
standard cells dedicated to the RCT components shown in Figure
3, including MUX/AND/OR gates. Do note that the RCT compared
to the SiLago block's LCT capacitance takes up ~2.5% of the total.
The EDA generated RCT introduces a capacitance overhead of
0.4%. The overhead as a percentage of the total clock distribution
(RCT + Local Clock Tree-LCT) is ~2%.

The SiLago RCT achieves a comparable arrival time of RCT at
LCT entry points compared to the commercial EDA RCT. The
SiLago RCT has a slightly better slew rate at LCT entry. The
average and absolute difference in slew at different points in
trunks for the entire (RCT+LCT) clock tree is also comparable and
within the limits of the technology rules. The above experiment
and the reported results establish that RCT generated by abutment
has comparable quality as the one generated by the commercial
EDA tools. The difference is that the EDA tool generated RCT is
ad-hoc and synthesised anew for each design instance and

iteration. Notice that the EDA RCT's irregularity in Figure 6
resulting from the attempt to factor and reuse the buffers. In
contrast, the synchoros RCT is regular. The ad-hoc nature of the
EDA RCT and its irregularity violates the requirements that the
synchoros design style places on RCT, as discussed in section 2.

The synchoros RCT by abutment is regular, as shown in Figure
6b. It has three main branches corresponding to two DRRA and
one DiMArch rows. Each branch has eight leaf nodes, and each
leaf node has the same RCT structure. The regularity of the SiLago
RCT enables abutment. Its stable structure, together with its
absorption in the SiLago blocks as a pre-synthesised and
characterised structure, enables predictability. The proposed
method's main drawback is the clock latency, which is higher than
the EDA RCT, as shown in Figure 6. The increased variation
implied by the higher latency is factored in the PVT variations.
The higher latency is defended by its potential to improve design
productivity by enabling a predictable RCT and a composition by
abutment scheme. We observe that when we transitioned from
full-custom to standard-cell based designs, we accepted significant
overheads in the interest of improved design productivity.

3.5 Analysis of Experimental Results
The experiments and their results presented in the previous

sub-sections prove the following: i) the feasibility of generating
RCT by abutment, ii) the generated RCT is a valid VLSI design, iii)
the generated RCT is predictable, iv) the composition by abutment
is scalable with complexity and v) the RCT generated by abutment
has negligible overhead when compared to functionally
equivalent RCT generated by the state-of-the-art design flow.

The key benefit of the composition of RCT by abutment is that
it contributes to raising the physical design level to RTL; for both
logic and wires. This makes the VLSI design space exponentially
smaller, composable and predictable to enable automated
synthesis from higher abstractions, as argued in [1].

4 State of the Art
The CTS (Clock Tree Synthesis) has been researched since the

earliest days of VLSI. The CTS research's main objective has been
to optimise the clock tree's cost metrics, i.e., smaller switching
capacitance, minimising skew, maintaining an edge, etc.[7], [8].
These approaches are based on sophisticated heuristic algorithms.

Figure 6. EDA generated RCT vs SiLago RCT

TABLE 1

EDA RCT VS SILAGO RCT

 SiLago RCT EDA RCT % Change

Wire Length [μm] 422932.1 415263.9 1.8 %

Standard Cell Area [μm2] 19472.6 18276.5 6.5 %

Average Trunk Slew [ns] 0.062 0.090 31.1 %

Total Capacitance [pf] 129.9 127.2 2.1 %

Avg. Diff. in Arrival Time
(LCT Entry Point) [ns]

0.04299 0.0337 27.6%

Most of these methods are based on the van Ginneken dynamic
programming algorithm for buffer insertion and sizing, and the
delay model used is the Elmore delay model [9]. An excellent
survey of CTS techniques is presented in [10]. In [7], [11] and [12]
the authors use a post-clock-tree-synthesis optimization. The
proposed methods optimise the clock tree by altering an already
synthesised tree. In contrast, our goal is to balance the clock's
arrival time at the local clock trees' source points.

The key difference between the research proposed in this
paper and the ad hoc CTS research reviewed above is that in
synchoros VLSI design style, composing a larger design in terms
of SiLago blocks does not involve creating new wires of any type,
including the clock. Whereas in the state-of-the-art, clock wires
and buffers are synthesised as part of physical synthesis as a post
logic synthesis step. In many other respects, the RCT generation
method proposed in this paper does not compete directly with the
research reviewed above; they are complementary. What we
propose is an alternative to the clock tree generation at a higher
level, which has relatively insignificant capacitance but
profoundly affects the engineering cost and predictability.

CTS research has also focussed on regular topologies of clock
trees like H-tree and Mesh clock structures [9], [13]. The
regularity of these structures makes them seem a good match for
the synchoros VLSI design style. These structures do not fulfil the
requirements of creating RCT by abutment. H-Tree is a
hierarchical structure, and its depth would depend on the size of
the region instance. For this reason, it is absorbing an H-Tree as
RCT fragments and being able to create an arbitrary H-Tree by
abutment that is dependent on the size and shape of the region
instance is not feasible. Mesh-based clock tree poses a challenge
in terms of the predictability requirement. Since the clock tree
mesh creates an equipotential surface, it creates cyclic graphs that
are impossible to analyse with STA [9], [13]. This is an even bigger
problem for the RCT by abutment scheme because it requires the
iron-clad timing models to predict the RCT properties with
sufficient accuracy. The standardised entry points and
propagation path of the SiLago RCT make it possible to have a
trustworthy timing model.

Like synchoros VLSI designs, FPGAs are regular structures and
naturally invite comparison of their clock tree schemes. The
fundamental difference is that the clock tree routing is pre-
designed for each FPGA. The FPGA wires and LUTs can be
configured differently, but the silicon will not change. In contrast,
depending on functionality and constraints, the higher abstraction
syntheses will create region instances of different size, aspect
ratio, and entry points. This will result in different RCT
dimensions and topology. All the wires in synchoros VLSI design
are regular and structured but can be connected and organised in
various ways to create endless variations of structures.

Further, FPGAs do require an STA as a post-synthesis step. In
synchoros VLSI design, the regions are pre-characterised to work
up to a clock speed, as long as the RCT infrastructure can deliver
the clock to the LCT entry points inside a known skew margin.
This is why the synchoros VLSI design requires no physical level
STA. The region instances of arbitrary size and domain-specific
functionality are guaranteed to be correct-by-construction.

Some methods have been proposed for post-fabrication clock
deskewing [14], [15]. These methods use configurable buffers and
delay lines to correct the skew after fabrication and are still
designed ad-hoc for each design. Our method's innovation is the
structured design of the RCT that makes it predictable and not the
use of the delay line. The structured and predictable design
enables higher-level synthesis, as argued in [1]

5 Conclusion and Future Work
We have presented a regional clock tree generation method

based on abutting fragments of RCT that are absorbed SiLago
blocks as a one-time effort. We are working on several
enhancements to the RCT method and the overall synchoros VLSI
design framework. The programmable delay line is constructed
from qualified standard cells, and its atomic delay decides the
resolution to which we can minimise the skew. We are working
on a more advanced programmable delay line that will allow a
finer adjustment of delay that would be needed for higher
frequencies. In this improved delay line, the number of taps would
increase logarithmically with the delay. Such a delay line will be
constructed with weighted positional taps much like a fixed-point
number. We are also in the process of making the delay of each
tap in the delay line adaptive [16], [17] to make the design more
robust and enable dynamic voltage frequency scaling.

REFERENCES
[1] A. Hemani et al., "Synchoricity and NOCs could make Billion Gate Custom

Hardware Centric SOCs Affordable," in IEEE/ACM International Symposium on
Networks-on-Chip (NOCS), 2017, pp. 1–10.

[2] M. A. Shami et al., "Partially reconfigurable interconnection network for
dynamically reprogrammable resource array," in International Conference on
ASIC, Oct. 2009, pp. 122–125.

[3] A. B. Chong, "ASIC design margin methodology," in IEEE 2013 Tencon - Spring,
Apr. 2013, pp. 165–173.

[4] A. Elzeftawi et al., "Addressing Process Variation and Reducing Timing
Pessimism at 16nm and Below," 2016.

[5] M. A. Shami, "Dynamically Reconfigurable Resource Array," KTH - ICT, 2012.
[6] M. A. Tajammul et al., "TransMem: A memory architecture to support dynamic

remapping and parallelism in low power high performance CGRAs," in
PATMOS, 2016, pp. 92–99.

[7] C. Deng et al., "Fast synthesis of low power clock trees based on register
clustering," in International Symposium on Quality Electronic Design, Mar. 2015.

[8] P. J. Restle et al., "A clock distribution network for microprocessors," IEEE J.
Solid-State Circuits, vol. 36, no. 5, pp. 792–799, May 2001.

[9] L. Lavagno et al., Electronic design automation for IC implementation, circuit
design, and process technology : circuit design, and process technology, 2nd ed.
Boca Raton, FL: CRC Press USA, 2016.

[10] A. Rajaram et al., "Robust chip-level clock tree synthesis," IEEE Trans. Comput.
Des. Integr. Circuits Syst., vol. 30, no. 6, pp. 877–890, 2011.

[11] T. J. Wang et al., "Top-level activity-driven clock tree synthesis with clock skew
variation considered," IEEE Int. Symp. Circuits Syst., 2016.

[12] J. Lu et al., "Post-CTS clock skew scheduling with limited delay buffering,"
Midwest Symp. Circuits Syst., pp. 224–227, 2009.

[13] A. Abdelhadi et al., "Timing-driven variation-aware nonuniform clock mesh
synthesis," ACM Gt. Lakes Symp. VLSI, pp. 15–20, 2010.

[14] A. Chattopadhyay et al., "Reconfigurable Clock Distribution Circuitry," in
International Symposium on Circuits and Systems, May 2007, pp. 877–880.

[15] Yuko Hashizume et al., "A novel clock deskew method by linear programming,"
in Midwest Symposium on Circuits and Systems, Aug. 2007.

[16] C. C. Kao, "Clock Skew Minimisation in Multiple Dynamic Supply Voltage with
Adjustable Delay Buffers Restriction," J. Signal Process. Syst., vol. 79, no. 1, 2014.

[17] K. Park et al., "Mixed allocation of adjustable delay buffers combined with buffer
sizing in clock tree synthesis of multiple power mode designs," in DATE, 2014.

