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Why?

� Challenges

� increasing Process Variations with Technology
Scaling

� significant uncertainty in circuit characteristics

� Consequences

� impact on yield

� circuit parameters are random variables (R, L, C)

� circuit response is a Stochastic Process

� every manufactured circuit - single manifestation of
the process

� Obtain probability distributions of circuit delay, power
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What do we need?

� Analytical models as functions of random
variables for

� interconnects

� gates

� power grids

� Handle various distributions of the random
variables

Do not re-use without permission - TAU 2005 - p. 2/32



Presentation Outline

� Problem Formulation

� Summary of our Approach

� What’s new?

� Details of our Approach

� Results

� Conclusions
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Stochastic Interconnect Model
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Stochastic Power Grid Model
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Stochastic State-space Model
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Monte Carlo Simulations
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Summary of Our Approach
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What’s new?

� Explicit analytical expansion for stochastic
response

� Accurate higher order expansions possible

� Optimal in the mean square sense

� Statistical interconnect analysis with process
variations

� perturbation based approaches (Liu et al., DAC’99, Heydari et al., ICCAD’01,
Wang et al., DAC’04)

� truncated balanced realizations based approaches (Philips, ICCAD’04)

� interval based approaches (Ma et al., ICCAD’04)

� Statistical power grid analysis considering

� input leakage current variations (Ferzli et al., ICCAD’03)

� variations in the primary inputs (Pant et al., DAC’04)
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Basis of Our Approach

� Circuit response V
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Hermite Polynomials

� Hermite Polynomials - basis for Gaussian
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Hermite Polynomial Expansion
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Transformations to Gaussian

Distribution Type Transformation
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Best Orthonormal Bases

Variable Distribution Polynomials

Continuous Gaussian Hermite
Log-normal Hermite

Gamma Laguerre
Beta Jacobi

Uniform Legendre

Discrete Poisson Charlier
Binomial Krawtchouk

Negative Binomial Meixner
Hypergeometric Hahn
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State-space Available - Galerkin Method
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Galerkin Method - Illustration
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Galerkin Method - Illustration
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Variations in Inputs Only
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State-space Unavailable - SRSM Method

� Stochastic Response Surface Methods - Delay d
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SRSM Method
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� Zeros of (p+1) order polynomials Φi
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for pth order
Truncation

� Zeros called Collocation points, number required is N

� � N Collocation points available; choose points in high
probability regions

� SRSM is sensitive to the choice of N points

� Choose M � 2N to 3N points, use a Least Mean Square
fit
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Computational Cost of Galerkin

� Stochastic

�

n � n
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rp n � rp n

�

deterministic

� r - # of random variables, p - expansion order

� p = 2 or p = 3 generally sufficient

� Some efficient solution methods:

� block LU factorization

� iterative conjugate gradient based methods with
pre-conditioners

� reduced order modeling linearizes complexity

� Up to two orders (100x) of speedup over Monte
Carlo
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Computational Cost of SRSM

� Simulating circuit 2N-3N times is the dominant step

� N � rp, r - random variables, p - expansion order

� p = 2 or p = 3 generally sufficient

� Up to two orders of speedup over Monte Carlo
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General Methodology - Galerkin Method

� Model circuit using State-space equations

� Represent circuit response as an infinite series

� Truncate the infinite series and minimize the error norm

� Solve resulting linear system to obtain unknown
coefficients

� Obtain the distribution

Do not re-use without permission - TAU 2005 - p. 23/32



General Methodology - SRSM Method

� Approximate the circuit response by an order p
expansion.

� Obtain the collocation points, zeros of (p+1) order
polynomials

� Obtain the circuit response from simulation at
collocation points

� Use regression to obtain a Least Mean Square fit for
the response

� Obtain zeros of (p+2) order polynomials

� If error � ε, then repeat else stop

Do not re-use without permission - TAU 2005 - p. 24/32



Experimental Results - Interconnects

� OPERA - Orthogonal Polynomial Expansions for
Response Analysis

� MC - Monte Carlo Simulations

� Gaussian Distribution

� Global Width (ZW ) and Thickness (ZT ) variations

� Linear models for G,C in ZW � ZT

� Order 2 OPERA-Galerkin and OPERA-SRSM
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Gaussian: RC tree 7 nodes
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Gaussian: RC tree 7 nodes

� 50 % VDD delay in ns. from OPERA, MC (1000 points)

� max. width variation 35 %, max. thickness variation 30 %

Node MC Galerkin SRSM MC Galerkin SRSM
µ µ µ 3σ 3σ 3σ

2 3.93 3.92 3.92 0.567 0.573 0.544
3 6.79 6.78 6.78 0.968 0.979 0.955
4 9.31 9.30 9.30 1.320 1.337 1.286
5 11.26 11.25 11.25 1.592 1.613 1.590
6 12.61 12.62 12.62 1.782 1.805 1.726
7 13.40 13.40 13.40 1.890 1.917 1.884
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Gaussian: H-shaped clock tree (0.13 µ)

� 50 % VDD terminal node delays for varying fanouts

� From OPERA and MC (1000 points)

# MC Galerkin SRSM MC Galerkin SRSM Speed-up (X)
fanouts µ µ µ 3σ 3σ 3σ Galerkin SRSM
4 263.7 264.2 263.7 30.84 30.88 29.88 0.5 45
16 258.9 259.3 259.2 30.40 30.43 30.50 0.6 67
64 275.8 276.3 276.3 31.56 32.63 31.23 1.2 55
256 285.8 285.8 285.8 33.31 33.24 32.61 3.3 51
1024 296.5 296.2 296.2 34.68 34.88 35.98 10 52
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RC Interconnect

� Delay distribution from MC, OPERA

� max. width variation of 35% and max. thickness variation 30%
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Experimental Results - Power Grids

� OPERA - Orthogonal Polynomial Expansions for
Response Analysis

� MC - Monte Carlo Simulations

� Gaussian Distribution

� Global Width (ZW ) and Thickness (ZT ) variations of
conductors

� Effective channel length variations (ZLe f f ) in the
devices

� 3σ variations in ZW = 20%, ZT = 15%, ZLe f f = 20%

� Linear models for G,C and drain currents in
ZW � ZT � ZLe f f
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Power Grid Results

� 50 % VDD delay in ns. from OPERA, MC (1000 points)

� Order 2 OPERA-Galerkin and OPERA-SRSM

Size % Error in µ vs. % Error in σ vs. Speed-up (X)
MC ( � 10 � 2) MC

(#nodes) Galerkin SRSM Galerkin SRSM Galerkin SRSM
19181 1.550 1.743 2.530 3.167 101 38
25813 4.222 0.250 3.410 5.325 20 28
34938 2.040 0.500 1.530 0.967 65 38
49262 1.992 1.167 6.730 2.961 27 32
62812 6.800 0.900 3.820 2.130 85 37
91729 1.370 0.300 3.280 4.277 124 38

351838 9.260 1.279 5.270 4.853 104 38
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Conclusions

� Novel scheme for variational analysis

� Explicit functional representation of stochastic
circuit response

� Optimal in the mean square sense

� Extensively verified for several test cases

� Excellent match with MC simulations

� Speed-ups of up to two orders of magnitude over
MC
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