
IBM Microelectronics

Tau 2005 February 28, 2005 © 2005 IBM Corporation

A Brief History of Timing

David Hathaway
February 28, 2005

IBM Microelectronics

© 2005 IBM Corporation2 Tau 2005 February 28, 2005

Outline

� Snapshots from past Taus

� Delay modeling

� Timing analysis

� Timing integration

� Future challenges

IBM Microelectronics

© 2005 IBM Corporation3 Tau 2005 February 28, 2005

Tau Workshop

� Longest title…
– ACM/IEEE International Workshop on Timing Issues in the Specification

and Synthesis of Digital Systems

� … but shorest nickname

– �

� Held 9 times at irregular intervals since 1990
� Workshop focus has shifted over time

� My focus will be on:
– Timing analysis (not optimization)
– Synchronous systems
– Netlist level and below
– On-chip

IBM Microelectronics

© 2005 IBM Corporation4 Tau 2005 February 28, 2005

Tau 1992

� General

– 2.5 days

– ~ 50 people?

– 28 talks, 2 panels

� Topics

– 11 (+1 panel): Asynchronous timing
• Most heard phrases: “isochronic fork,” “bounded delay”

– 9: Logical / timing analysis (false paths, etc.)

– 4: Transparent latch timing / pipelining

– 1 (+1 panel): Delay modeling

IBM Microelectronics

© 2005 IBM Corporation5 Tau 2005 February 28, 2005

Tau 1997

� General
– 2 days

– ~ 120 people

– 22 talks, 18 posters

� Topics
– 9: Impacts of small geometries

• Most heard phrase: “deep submicron”
• Included 5 on cross-talk analysis

– 6: Asynchronous timing

– 6: Logical / timing analysis

– 5: Delay modeling

– 4: Retiming

– 2: Useful skew

IBM Microelectronics

© 2005 IBM Corporation6 Tau 2005 February 28, 2005

Tau 2005

� General

– 1.5 days

– 16 talks

� Topics

– 8: Statistical timing / optimization

– 2: Asynchronous / timing of cyclic networks

– 2: Clocking schemes

IBM Microelectronics

© 2005 IBM Corporation7 Tau 2005 February 28, 2005

Outline

� Snapshots from past Taus

� Delay modeling

� Timing analysis

� Timing integration

� Future challenges

IBM Microelectronics

© 2005 IBM Corporation8 Tau 2005 February 28, 2005

Early delay models

� Constant delay per gate

– Power levels used to keep delay constant

� CMOS delay load-dependence originally just fanout

– Ignored wire load, load difference between gates

� Bipolar load-dependence more complicated

– Included DC currents (like gate leakage?)

– Delay models included explicit dependence load cell

• … if block X drives cell Y, use delay dXY …

Cload

Delay Specified gate delay

Power
level A

Power
level B

Power
level C

IBM Microelectronics

© 2005 IBM Corporation9 Tau 2005 February 28, 2005

Slew dependence

� Delay models both began to use and produce slews
– Typically measured as 10%-90% or 20%-80% time

� Simple scalar slew model is limited
– Shape of waveform may affect delay

– Discrete crossings can cause discontinuities

� Recent alternatives
– Piecewise-linear waveform

• Useful for simulation-based delay calculation (e.g., transistor-level)
– Metrics based on weighted waveform integration

IBM Microelectronics

© 2005 IBM Corporation10 Tau 2005 February 28, 2005

Wire impact on delay
� Originally considered only wire capacitance

– Allowed single timing value (e.g., arrival time) for entire net
– Used wire load models – no actual placement / wiring data

� RC wire delay itself became important

[ITRS 2001
roadmap]

IBM Microelectronics

© 2005 IBM Corporation11 Tau 2005 February 28, 2005

Wire delay models

� Elmore delay

– Analytic form useful in optimization

– Problems arose due to resistive shielding

� Model order reduction
• AWE, RICE, PRIMA, …
• Higher computational cost, higher accuracy

� Pure capacitive gate load model became inadequate

– Ceff, Pi model

� Lateral wire capacitance becoming dominant

� Guard banding min/max effective capacitance too pessimistic

� Coupling delay models

– Equivalent grounded capacitance based on total charge injected into wire

– Dynamic simulation

Rsmall

Rlarge

Clarge

CsmallRcommon

IBM Microelectronics

© 2005 IBM Corporation12 Tau 2005 February 28, 2005

Delay variability

� Initially considered by process corner analysis
– All delays “fast” or “slow”

– Perfect correlation

� Across chip variation became important
– Important for tests comparing early / late times

– One way: assume x percent min (late) / max (early) delay variation
• Problem: not all cells have same sensitivity to process variation

– IBM “LCD” (linear combination of delays) approach

Cell A

Cell B

fast

fast slow

slow
Late @ 1.0 * slow

Early @ 0.8*slow + 0.2 * fast E

E L

L

IBM Microelectronics

© 2005 IBM Corporation13 Tau 2005 February 28, 2005

Delay impact of variations

± 5%Model/hardware uncertainty

(Per cell type)

±10%N/P mistrack

(Fast rise/slow fall, fast fall/slow rise)

±10%Device fatigue (NBTI, hot electron effects)

±10%PLL

(Jitter, duty cycle, phase error)

± 5%Vt and Tox device family tracking

(Can have multiple Vt and Tox device families)

±15 %Environmental

(Voltage islands, IR drop, temperature)

-10% � +25%BEOL metal

(Metal mistrack, thin/thick wires)

Delay ImpactParameter

[Courtesy Kerim Kalafala &
Chandu Visweswariah]

� Requires 220 timing runs or [-65%,+80%] guard band!

IBM Microelectronics

© 2005 IBM Corporation14 Tau 2005 February 28, 2005

Delay rules

� Many approaches
– Tables

– Fixed equations

– Simulation-based methods
• Fast transistor-level simulator
• Equivalent current source models

� Need flexibility
– Both dependencies and functional form of delay are changing

– Need to separate delay calculation algorithm from delay interface
• Not possible with .lib
• DCL (Delay Calculation Language)
• Complicates delay calculation / timing interface

� Characterization effort increasing
– Need to apply dimensionality reduction methods

IBM Microelectronics

© 2005 IBM Corporation15 Tau 2005 February 28, 2005

Outline

� Snapshots from past Taus

� Delay modeling

� Timing analysis

� Timing integration

� Future challenges

IBM Microelectronics

© 2005 IBM Corporation16 Tau 2005 February 28, 2005

Static Timing
� Major triumph of static timing analysis

– Allows efficient analysis by separating topology from function

– Avoids exponential blow-up due to sensitization dependencies

– Requires acyclic timing graph

A

B

X

0 10 20 30 40 50

X

A
B Xd=1

IBM Microelectronics

© 2005 IBM Corporation17 Tau 2005 February 28, 2005

Static Timing – two dominant approaches
� Path oriented

– In pure form can require exponential path tracing

� Block-oriented
– Linear in network size
– Computes single arrival times (ATs) at each node
– Usually still can report results in terms of paths

...

10 stages, 3 reconvergent paths per stage = 30 edges, 59049 paths

E

...

N

ATLM(N) = Max (ATLM(source(E)) + delaymax(E))
E ���� in-edges(N)

IBM Microelectronics

© 2005 IBM Corporation18 Tau 2005 February 28, 2005

False paths
� Purely topological timing can be pessimistic

� Lots of focus on false path identification / removal in 1990s
– Found that “hidden” false paths are rare

� Current approach – false path analysis, not identification
– Analyze by creating “copies” of topological analysis (false subgraph)

∆∆∆∆=8

∆∆∆∆=1

∆∆∆∆=2

∆∆∆∆=8

∆∆∆∆=1

∆∆∆∆=2

∆∆∆∆=1

PI

PI

PI

PO

∆∆∆∆=8

∆∆∆∆=1

∆∆∆∆=2

∆∆∆∆=8

∆∆∆∆=1

∆∆∆∆=2

∆∆∆∆=1

PI

PI

PI

PO

2:1 mux 2:1 mux

D=20

D=13

IBM Microelectronics

© 2005 IBM Corporation19 Tau 2005 February 28, 2005

Common path pessimism removal
� Problem realized once delay variation was considered

– ATs in block-oriented analysis “forget” their past

– Worst early and late paths to a test may pass through common block
(generally in clock tree)

� Solution – selective path tracing

– Apply only on “failing” tests

– May need repeated path tracing

10

11

2/4 2/4

2/4

Clock ATearly=4

Data ATlate=19 � 15

Pessimism = 4

Data ATlate=18 � 16

Pessimism = 2

IBM Microelectronics

© 2005 IBM Corporation20 Tau 2005 February 28, 2005

Slew selection
� Slew depends on path along which signal propagates

– Requires integration of delay calculation with timing

� Various solutions

– Choose slew associated with dominant AT – can be optimistic

A C D

B

Signal at C
due to A

Signal at C
due to B

Modeled
signal at C

IBM Microelectronics

© 2005 IBM Corporation21 Tau 2005 February 28, 2005

Slew selection
� Slew depends on path along which signal propagates

– Requires integration of delay calculation with timing

� Various solutions

– Choose worst slew independent of AT – can be pessimistic

A C D

B

Signal at C
due to A

Signal at C
due to B

Modeled
signal at C

IBM Microelectronics

© 2005 IBM Corporation22 Tau 2005 February 28, 2005

Slew selection
� Slew depends on path along which signal propagates

– Requires integration of delay calculation with timing

� Various solutions

– Carry multiple slews until one dominates – data / computation increase

A C D

B

Signal at C
due to A

Signal at C
due to B

Modeled
signal at C

IBM Microelectronics

© 2005 IBM Corporation23 Tau 2005 February 28, 2005

Slew selection
� Slew depends on path along which signal propagates

– Requires integration of delay calculation with timing

� Various solutions

– “Merged” slew – artificial waveform matching worst 50%, 90% points

A C D

B

Signal at C
due to A

Signal at C
due to B

Modeled
signal at C

IBM Microelectronics

© 2005 IBM Corporation24 Tau 2005 February 28, 2005

Statistical timing

� New approaches

– Parameter space methods
• Model delays as functions of these statistical parameters

ox
t

eff
L

�������
�	�
�	

��
�����
�

�����
	��
������

[Courtesy Kerim Kalafala &
Chandu Visweswariah]

IBM Microelectronics

© 2005 IBM Corporation25 Tau 2005 February 28, 2005

Statistical timing

� Inherent problem with block-based methods

– Statistical AT variation depends on path

– Can use block-based non-statistical method to select paths

– Block-based statistical methods
• Approximate actual statistical result by creating “representative” path
• Estimate dominance probability of path (criticality) or edge (tightness)

1.0

0.0

Deterministic

0.8

0.2

Statistical

[Courtesy Chandu Visweswariah]

IBM Microelectronics

© 2005 IBM Corporation26 Tau 2005 February 28, 2005

Power supply impacts on timing

� Hard to determine “worst” condition
– Timing tests compare early / late times

• Worst condition can come from worst noise difference on racing paths
– Transient power supply noise makes this worse

� Recent methods attempt to cover space
– Use superposition to model combined effects of different noise sources

at different times
– Model path delay as function of different noise source activities
– Use optimization methods to find worst condition

A

B B

B

A

A

+ =

+ =

IBM Microelectronics

© 2005 IBM Corporation27 Tau 2005 February 28, 2005

Simultaneous switching

� Traditionally consider only single input switching

� Simultaneous switching becoming more important

– Optimization tends to create “slack wall”

� Easier in block-oriented than path-oriented analysis !

� Increases characterization cost

– Grows with number and possible alignments of inputs

– Easily handled by simulation-based delay calculation

A
B X
C

A

B

C

IBM Microelectronics

© 2005 IBM Corporation28 Tau 2005 February 28, 2005

Wire coupling in static timing – aggressor selection
� Use aggressor timing windows

– Complicates timing analysis / delay calculation interaction
– Can break acyclic timing graph

� Initially, use single time window per aggressor

�

�

� �

�

���
�������

��	����

�

�

�

�

IBM Microelectronics

© 2005 IBM Corporation29 Tau 2005 February 28, 2005

Wire coupling in static timing – aggressor selection
� Use aggressor timing windows

– Complicates timing analysis / delay calculation interaction
– Can break acyclic timing graph

� Initially, use single time window per aggressor
� Reduced pessimism with multiple windows per aggressor

�

�

�

� �

�

���
�������

��	����

�

�

�

�

IBM Microelectronics

© 2005 IBM Corporation30 Tau 2005 February 28, 2005

Should static timing be “safe?”

� For fixed delays, topological analysis guarantees coverage
– No pessimism except for false paths

� But delays depend on things that may not occur often in path
– Wire coupling, simultaneous switching

� Safe approach says assume all bad thing happen together
– Every aggressor of every net in path switches in “bad” direction

– Very conservative

� Instead – assume some limit on how many bad things happen
– Obvious method: path tracing, look at N worst impacts on path

– Doubly exponential

IBM Microelectronics

© 2005 IBM Corporation31 Tau 2005 February 28, 2005

N-fault timing

� Turns out we can do this in
block-based paradigm

– To model N “faults” per path …

– Create N+1 “copies” of timing
graph

– Add “fault” edges between them

� Properties

– Any path can traverse at most
N fault edges

– Graph contains all paths of N
faults

N=2

IBM Microelectronics

© 2005 IBM Corporation32 Tau 2005 February 28, 2005

Outline

� Snapshots from past Taus

� Delay modeling

� Timing analysis

� Timing integration

� Future challenges

IBM Microelectronics

© 2005 IBM Corporation33 Tau 2005 February 28, 2005

Timing integration

� Why do we need integrated timing analysis?

– Timing is complicated

– Every timing optimization method shouldn’t do its own analysis

– Instead have a timing subsystem

� Key feature – autonomic control

– User of timer shouldn’t have to know how it works

IBM Microelectronics

© 2005 IBM Corporation34 Tau 2005 February 28, 2005

Incremental timing

� What do I mean by incremental?

– Keep active timing graph

– Small design changes � small changes in timing graph values

� Incremental + autonomic

– Requires a common data model w. callbacks
• Application changes model
• Timer gets change information of interest from model callbacks

Application Timer

Common data model

Result

Query

CallbacksChanges

Timing data
(timing graph)

IBM Microelectronics

© 2005 IBM Corporation35 Tau 2005 February 28, 2005

Incremental timing – when to update

� Change management - obvious approach

– Update everything whenever a change is reported
• Expensive (too much recalculation)
• Imposes processing order requirements on callbacks

� Better approach

– Only perform invalidation on change report

– Wait to recompute information until needed

�Lazy evaluation

IBM Microelectronics

© 2005 IBM Corporation36 Tau 2005 February 28, 2005

Incremental timing – how much to update

� Simple method
– Whenever timing request received, update all affected values

� Better approach - lazier evaluation
– Only update enough to answer the question asked

� Dominance limiting
– Stop propagating when values stop changing

– Doesn’t help much with changes in critical areas

– Dominance not clear-cut in statistical timing

� Level-limiting
– Propagate changes up to level of query

IBM Microelectronics

© 2005 IBM Corporation37 Tau 2005 February 28, 2005

Level limited incremental timing

� Keep levelized list of timing change “frontiers”
– On timing request propagate changed values up to request point level

– Slews, tests, and RATs add complications

Query
point

Change
point

AT Recalc
region

Query
point

IBM Microelectronics

© 2005 IBM Corporation38 Tau 2005 February 28, 2005

Even lazier evaluation

� Integrated applications generally focus on critical areas

– Changes in critical areas tends to propagate everywhere

– Temporarily limit propagation to “critical section”
• Not completely safe – critical section can change

– Keep track of other frontier points for complete update later

Critical section

Change
point

Query
point

Recalc region

IBM Microelectronics

© 2005 IBM Corporation39 Tau 2005 February 28, 2005

Do we really have timing-driven design?

� No, we have timing-influenced design

– Today’s timer is still passive.

– Applications still query timer, but need to know what to ask and
where

– Design change can have unforeseen consequences
• Change aggressor switching window for coupling
• Legalization moves stuff
• Accurate timer understands these interactions better than the

optimizer!

IBM Microelectronics

© 2005 IBM Corporation40 Tau 2005 February 28, 2005

Timing-driven design

� True timing-driven design

– Need timer to take control – identify problems
• Avoid reanalyzing entire design – so don’t make optimizers initiate query

– Report results of series of operations
• Change may be composite
• Don’t accept/reject based on any single step
• Means that timer must understand and report on “unit of work” between

checkpoints

� Extending to other domains (power, etc.)

– Objective-driven design

IBM Microelectronics

© 2005 IBM Corporation41 Tau 2005 February 28, 2005

Outline

� Snapshots from past Taus

� Delay modeling

� Timing analysis

� Timing integration

� Future challenges

IBM Microelectronics

© 2005 IBM Corporation42 Tau 2005 February 28, 2005

Asynchronous design

� Synchronizing clocks across a chip is getting harder

– … and more expensive (power, routing)

� GALS (globally asynchronous / locally synchronous)

– Pressure will build to shorten latency across interfaces

– Will ask new questions of timing

IBM Microelectronics

© 2005 IBM Corporation43 Tau 2005 February 28, 2005

Guide optimization

� Optimization has many options

– Have to decide which will be most effective

� Provide gradients

– Don’t just say what the slack is

– Say what it depends on, and how
• Choice of cells
• Choice of Vt
• Choice of metal layers
• Choice of placement
• …

IBM Microelectronics

© 2005 IBM Corporation44 Tau 2005 February 28, 2005

Handling variation in everything

� Continued development of statistical timing

� Accurate relative statistical timing for adaptive systems
Account for process, environment, workload variation

Deterministic

Compare “bounds”

Spec

IBM Microelectronics

© 2005 IBM Corporation45 Tau 2005 February 28, 2005

Handling variation in everything

� Continued development of statistical timing

� Accurate relative statistical timing for adaptive systems
Account for process, environment, workload variation

Spec
Compare expected

values

Statistical

IBM Microelectronics

© 2005 IBM Corporation46 Tau 2005 February 28, 2005

Handling variation in everything

� Continued development of statistical timing

� Accurate relative statistical timing for adaptive systems
Account for process, environment, workload variation

Relative
statistical

Ring
osc.

Ref. path

Compare expected
values

IBM Microelectronics

© 2005 IBM Corporation47 Tau 2005 February 28, 2005

Find the worst conditions

� We’ve been very lucky
– Topological timing efficiently bounds performance with little pessimism

• …but only for simple delay models & relationships

� Bounding in other domains is not so easy
– Power supply

– Activity

– Process

– … and these affect timing

� Use statistical timing
– Not all of these are statistical phenomena

– But use statistical approx. to find important regions of condition space

IBM Microelectronics

© 2005 IBM Corporation48 Tau 2005 February 28, 2005

Continue to improve integration

� Timing isn’t the only objective

– Other objectives (power, noise) depend on timing

� Need smooth interaction of integrated incremental
subsystems

– Provide total picture of design vs. objectives to optimizers

� Keep incremental analysis close to sign-off analysis

– Fails in sign-off timing must be very rare

– Productivity needs demand automated design closure

IBM Microelectronics

© 2005 IBM Corporation49 Tau 2005 February 28, 2005

And be careful…

� New devices, circuits, design styles, & physical effects keep coming

– Timing (and other analysis) has to anticipate problems

� Images of Tacoma Narrows Bridge collapse, 1940

– Animation from:
• http://www.bradford.ac.uk/acad/civeng/marketing/civeng/failtac1.htm

– Photo from:
• http://www.scret.org/narrows/index.asp

