Synthesizing Asynchronous Burst-Mode Machines without the Fundamental-Mode Timing Assumption

Gennette Gill
Montek Singh

Univ. of North Carolina
Chapel Hill, NC, USA
Contribution

- **Synthesize robust asynchronous controllers**
 - ... from “burst-mode” finite-state machine specifications

- **No timing assumptions between controller and env.**
 - Reduces need for timing verification

- **Improves modularity and facilitates design reuse**
Outline

* Motivation
* Background and Previous Work
* Fundamental Mode: Challenges
* Our Solution
 * FSM Architecture
 * Synthesis steps
 * Example
 * Informal proof of correctness
* Results
* Conclusion
Motivation: Why Asynchronous Design

- No central clock – may eliminate problems inherent to synchronous design

- Several potential benefits:
 - higher speed, lower power, more modularity

- Our focus is improving modularity
Motivation: Modularity

- Replace modules locally without global implications
- Design reuse
- No timing analysis between module and env.
 - Decreased design and verification effort
- Facilitates automation; improves design time
Focus:

- Automated synthesis of asynchronous controllers

Objective:

- Minimize timing constraints between env and module
- Target is Quasi Delay-Insensitive (QDI) operation
 - Only timing assumption is “isochronic forks”
 - Equal wire delays along different fork branches
Burst Mode Finite State Machines

- A subset of Mealy finite state machines
- Consist of states connected by transitions
- Transitions consist of:
 - An input burst (a set of input changes)
 - An output burst (a set of output changes)
- Values change in any order within bursts
 - Must be monotonic

Motivation Background Challenges Solution Results Conclusion
Burst Mode Finite State Machines

Key properties:

- An output burst follows a *complete* input burst
- A new input burst follows a *complete* output burst
 - Restriction on the environment
- **Maximal set property:** No input burst can be a subset of another
 - Otherwise, specification is ambiguous
- **Unique entry point:** Each state can only be entered with a unique set of input values.
 - Facilitates hazard-free solution
Many existing methods

- Minimalist [Fuhrer/Nowick et al. 1996-2001]
- 3D [Yun et al. 1992]
- ATACS [Meyers et al. 1999]
- All operate using timing assumptions

Minimalist = Basis for our work

- Generates sum-of-products implementation
- Optimal synthesis steps
- Low Latency
Fundamental Mode

• The environment should not provide new inputs until after the machine has stabilized internally.

• When placing a component in an environment:
 - Perform timing analysis, or
 - Assume the environment is not too fast.

• Timing analysis of every instance undermines modularity.

• We break the timing assumption down into two separate challenges:
 - State bits may not have changed when output changes.
 - State bits may have changed, but not “stabilized”.
 - In either case, environment may react too fast.
Fundamental Mode: Challenge I

- **Output produced before state changes**
 - A new input arrives before the state changes
 - The machine is driven to an undesired state

Example:
- A transition from state A to state B on input 10
- A new input arrives before all state bits have changed
- The machine is driven to state C
Challenge I: Solution

* Do not change output until state has changed

With fundamental mode similar to a Mealy machine

Without fundamental mode similar to a Moore machine
Fundamental mode: Challenge II

* A new input can arrive before all products that implement an output or state bit have “stabilized”
* “Stabilized” ≠ changed
 - Stabilized means there is no gate that is enabled but has yet to change
* Example: \(P_1 \) and \(P_2 \) are *unacknowledged internal paths*
 - internal changes that cause no external changes
Challenge II: Solution

* Prevent more than one product from being enabled for a given function at any one time

 • Changed \Rightarrow stabilized

* Two prevention methods:

 • If one product, P_1 will assert before another product P_2, use P_1 to disable P_2

 • If ordering cannot be determined, products should not overlap in Boolean space
1. **Set/reset implementation:**
 - Each state and output bit has a set function and a reset function
 - Combine using a special C-element

2. **Output is fed back to disable set/reset functions**
 - Necessary to prevent unacknowledged internal paths

Table

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Hold</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Hold</td>
</tr>
</tbody>
</table>
Target architecture: Set/reset functions

- Set and reset functions are both implemented as two-level sum-of-products
- Each function is disabled once it has caused output change
 - inverted disable bit for set function

Set function

Reset function
In this scenario, the feedback disable prevents possible glitches.
Synthesis Approach

Two steps:

- **Constrained State Encoding**
 - Critical-race-free constraints
 - Non-overlapping cube constraints
 - Guarantees existence of correct logic covering

- **Constrained Logic Covering**
 - Hazard-free cover
 - Non-overlapping products
 - Imposes constraints on state encoding
We use a simple (non-optimized) logic covering step

- Does not introduce product overlaps or hazards
- Depends on the valid input region of a state

Definition: valid input region
Smallest cube that contains the entry point and all exit points of a state
Logic Covering: Output Logic

- Entry point of A is 00
- A transitions to B on input 11
- Output changes from 1 to 0
Logic Covering: State logic

- Entry point of \(A \) is 00
- \(A \) transitions to \(B \) on input 11
- Output changes from 1 to 0

Bit 1

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>(R^-)</td>
<td>(S^-)</td>
<td>(S^+)</td>
<td>(R^-)</td>
</tr>
<tr>
<td>A (01)</td>
<td>(S^-)</td>
<td>(S^-)</td>
<td>(S^-)</td>
<td>(S^-)</td>
</tr>
<tr>
<td>11</td>
<td>(R^-)</td>
<td>(S^-)</td>
<td>(S^-)</td>
<td>(S^-)</td>
</tr>
<tr>
<td>B (10)</td>
<td>(S^{dc})</td>
<td>(S^{dc})</td>
<td>(S^{dc})</td>
<td>(S^{dc})</td>
</tr>
</tbody>
</table>

Bit 2

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>(S^-)</td>
<td>(S^-)</td>
<td>(S^-)</td>
<td>(S^-)</td>
</tr>
<tr>
<td>A (01)</td>
<td>(R^-)</td>
<td>(R^-)</td>
<td>(R^-)</td>
<td>(R^-)</td>
</tr>
<tr>
<td>11</td>
<td>(S^-)</td>
<td>(S^-)</td>
<td>(S^-)</td>
<td>(S^-)</td>
</tr>
<tr>
<td>B (10)</td>
<td>(R^{dc})</td>
<td>(R^{dc})</td>
<td>(R^{dc})</td>
<td>(R^-)</td>
</tr>
</tbody>
</table>
State Encoding

Constraints:

- **Critical-race-free constraints**
 - Protect a transition from: another transition or stable state
 - i.e., to ensure transition from A to B does not get diverted to some other state X

- **Non-overlapping cube constraints**
 - Protect a state’s valid input region from other transitions
 - i.e., to ensure that a single product cover exists
 - Subsume critical-race-free constraints
Types of Dichotomies

Constraints expressed as dichotomies:

- **A dichotomy** \((S_a; S_b)\) is a constraint
 between two sets of symbolic states that
 prohibits their respective smallest
 containing binary cubes from intersecting

- **Constraints of type** \((AB; C)\)
 - Prevent state \(C\) from being embedded in
 transition \(AB\). Not necessary if \(C\) is don’t
 care in the input column.

- **Constraints of type** \((AB; CD)\)
 - Prevent transition \(AB\) from intersecting
 transition \(CD\).
Calculate the valid inputs for each state dichotomies:

- \{0, 1; 2, 3\}
- \{0, 1; 3\}
- \{1, 2; 0\}
- \{1, 2; 3\}
- \{2, 3; 0\}
- \{2, 3; 1\}

A sample burst mode finite state machine with two inputs:

Example:

Dichotomies: \{0, 1 | 2, 3\} because both transitions take place in input column 11.

Solve the dichotomies to find a state encoding that causes no illegal intersections.
Example: State Cover

State bit 1

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>S⁻ R⁻</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>S⁻ R⁻</td>
<td>S⁻ R⁻</td>
<td>S⁻ R⁻</td>
<td>S⁻ R⁻</td>
</tr>
<tr>
<td>S2</td>
<td>S⁻ R⁻</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>S⁻ R⁻</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

State bit 2

<table>
<thead>
<tr>
<th></th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>S⁻ R⁻</td>
<td>S⁻ R⁻</td>
<td>S⁺ R⁺</td>
<td>S⁻ R⁻</td>
</tr>
<tr>
<td>S1</td>
<td>S⁻ R⁻</td>
<td>S⁻ R⁻</td>
<td>S⁻ R⁻</td>
<td>S⁻ R⁻</td>
</tr>
<tr>
<td>S2</td>
<td>S⁻ R⁻</td>
<td>S⁻ R⁻</td>
<td>S⁻ R⁻</td>
<td>S⁻ R⁻</td>
</tr>
<tr>
<td>S3</td>
<td>S⁻ R⁻</td>
<td>S⁻ R⁻</td>
<td>S⁻ R⁻</td>
<td>S⁻ R⁻</td>
</tr>
</tbody>
</table>
Example: Output Cover

Output c

Output d
Solution to Challenges

Challenge I: Output change does not imply state change is complete

- Solved using the Moore model

Challenge II: Change does not imply stabilization

- Allow only single product activation: change \rightarrow stability
 - Logic covering approach = “single product cover”
 - Dichotomies to protect valid input regions
 - Fed back outputs to disable further product assertion

- Net result: only one product is activated at any given time for a given state or output bit
Informal Proof of Correctness

Define: *Stable internal state*

- At most one product is active for each output and state bit
- All fed back disables have reached the products in the set and reset functions

Assume: machine begins in a stable internal state

Claim: machine will return to a new stable internal state before a new input arrives
Informal Proof of Correctness

Proof:

- State change visible at point $a \Rightarrow$ state logic is stable
- Output change visible at point $b \Rightarrow$ output logic is stable

\Rightarrow FSM is stable when environment produces new input
Results

* Automated synthesis tool
 - Built off of Minimalist
 - Modified state encoding and logic covering

* Several burst-mode FSM benchmarks
 - Successfully able to handle all benchmarks
 - Some overhead w.r.t. Minimalist (as expected)
 - Not considered: state merging or feed-back output
Results

Comparison: Our method vs. Minimalist

- **I/S/O** = number of inputs, states, and outputs
- **#b** = number of state bits
- **#c** = product count

- Product count does not include set/reset elements

Key Results:

- Our method has the same number of state bits in each case
- Product count:
 - Max overhead = 58%
 - In some cases, up to 16% improvement

<table>
<thead>
<tr>
<th>Design</th>
<th>I/S/O</th>
<th>#b</th>
<th>#c</th>
<th>#b</th>
<th>#c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sbuf-read-ctl</td>
<td>3/7/3</td>
<td>3</td>
<td>19</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Sbuf-send-ctl</td>
<td>3/8/3</td>
<td>3</td>
<td>19</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>Rf-control</td>
<td>6/12/4</td>
<td>4</td>
<td>35</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>It-control</td>
<td>5/10/7</td>
<td>4</td>
<td>30</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>Pe-send-ifc</td>
<td>5/11/3</td>
<td>4</td>
<td>33</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>Dram-ctrl</td>
<td>7/12/6</td>
<td>4</td>
<td>35</td>
<td>4</td>
<td>27</td>
</tr>
<tr>
<td>Pscsi-ircv</td>
<td>4/6/3</td>
<td>3</td>
<td>16</td>
<td>3</td>
<td>19</td>
</tr>
</tbody>
</table>
Conclusion

New method for synthesizing asynchronous finite-state machines

- Eliminate fundamental-mode timing assumptions
- Allow modularity and design reuse
- Modest product count overhead

Further work:

- Optimized logic covering: cube merging
- State merging: reduce total number of states
- Fed back outputs as state bits