A Lattice-Based Framework for the
Classification and Design of
Asynchronous Pipelines

Peggy B. McGee and Steven M. Nowick

Department of Computer Science
Columbia University

Why Study Asynchronous Pipelines

No global clock
avoids global timing issues

Adaptability to environments running at different
speeds

mixed sync / async interfaces
different clock rates in left and right environments

dynamically-varying clock speed (due to voltage
scaling, etc.)

Reusability

Provides very high speed: "gate-level" pipelining
(multi-GHz)

TAU '05 — p.2

Overview

Many pipeline protocols have been proposed.

TAU '05 — p.3

Overview

Many pipeline protocols have been proposed.
Examples: pipelines using dynamic logic with no latches

TAU '05 —p.3

Overview

Many pipeline protocols have been proposed.
Examples: pipelines using dynamic logic with no latches

Putting them together in a unifying framework:

TAU '05 —p.3

Overview

Asynchronous Pipelines: Protocols

Basic protocol: stage N synchronizes with its 2 neighbors

When new data is available from stage N-1

And stage N+1 has consumed current result
Stage N computes a new value, sends it to its O:O:O
stage N+1, and sends acknowledgment to stage N-1 \

Many variants O:O:O

dual-rail data encoding vs. single-rail bundled data
two-phase vs. four-phase handshake signaling
dynamic logic vs. static logic

linear structures vs. ring structures

timing robust vs. using timing assumptions

[] [] [] [] [] [] [] [] []
TAU '05 — p.4

Asynchronous Pipeline: PCO

dynamic function block

C-element completion detector

Eval O Eval Eval O
daal | b b3 | datp
! F1 - F2 L F3 '
| |
| . . |
| StageN-1 ! | Stage N I Stage N+1 !

TAU '05 — p.5

Asynchronous Pipeline: PCO

Stage N Is enabled to evaluate when:
stage N-1 has new data

stage N+1 has completed reset of previous data token

| . |
|| L S '
| |
: L@i | : N | : %@7 |
: S E\(/:a{ i : O i : = E\C/:a{ O i
data data
| i | ; @ | | @ ' out
| F1 - F2 - F3 |
|
| . . |
| StageN-1 ! Stage N | StageN+1

TAU '05 — p.6

Asynchronous Pipeline: PCO

Stage N evaluates

—_—] = = ——= = = = — = = J

—_— et — — || — — = =— ! —_— == = J

PCO, Williams[1991]

TAU '05 — p.6

Asynchronous Pipeline;

Stage N is enabled to precharge when
stage N-1 has reset its data

stage N+1 has received the data

|
' :
|

|
. JC2 |
: Oj—l EVAf |
: |
| |

i
|
|
C/ |
|
|
|

F1

I |
| o |
- Stage N |

PCO, Williams[1991]

PCO

Stage N+1

data
out

TAU '05 — p.6

Asynchronous Pipeline: PCO

Stage N precharges

|
|
— |
+
<
D
(@)
S |
<+
N |
|
|
r————-— 71T — — — - — — — — _
—Lgl
. |
oS S
N
LL w_
&5
Q _
o |
|
rL+—-—~— 71T - — — - — — — — _
gl
— i |
I
>

QL — M_
LL S |
I8
ol @ 2
F O c S |
g |

PCO, Williams[1991]

TAU '05 — p.6

Protocol Graph: a Single Dynamic Pipeline Stage

L .e\vf_'_s
=l 13 data s
phase / data_d

(optional) isolate” I
®

phase

TAU '05 — p.7

Protocol Graph: PCO

e eval s
o data_s
o data_d
e eval d
e PC s
o reset_s
o reset d

e PC d

Stage N-1

e eval s
o data_s
o data d
e eval d
e PC s
o reset_s
o reset_d

e PC d

Stage N

e eval s
o data_s
o data_d
e eval d
e PC s
o reset_s
o reset_d

e PC d

Stage N+1

[)
TAU '05 — p.8

PCO

Protocol Graph

TAU '05 — p.8

d

o reset_s
o reset

7

e PC d
Stage N+1

Pe_

Stage N

Stage N-1

Asynchronous Pipeline: PSO

|
|
~ 1__
oS %
QL ™ _
)
Ll o
@ |
=
N |
|
|
r——T1 — — — — — - — — — — _
N |
s |
OF S
N
LL w_
= |
v,
|
|
rL+—-— - - - — — - - — — — _
—aH
O > |
i - <
)
LL =
@ |
=
o) |
©E |
e |

PS0, Williams[1991]

[)
TAU '05 — p.9

Protocol Graph: PSO

e eval s
o data_ s
o data_d
e eval d
e °‘C s
o reset_s

o reset d

e PC d

Stage N-1

e eval s
o data_s
o data_d
e eval d

'C_S

@ «—

o reset_s
o reset_d

e PC d

Stage N

e eval s
o data_s
o data_d
e eval d
e PC s
o reset_s
o reset_d

e PC d

Stage N+1

[]
TAU '05 — p.10

Graph Transformation: Basic |dea

Interstage arcs control
concurrency of
protocol

change concurrency
by moving arcs

o reset_s
o reset_d

e PC d

Stage N-1 Stage N Stage N+1

Protocol Graph

[] [] [] [] [] [] [] [] []
TAU '05 — p.11

Graph Transformation: Basic |dea
/\
o{al_s

o reset s o{i i
oJeset d olreset_s e PC s
i \
e RPC d /<\reset_d l: reset_s
< e PC d / reset_d
&/ e PC_d
Stage N-1 Stage N Stage N+1

Protocol Graph

Extracted Sub-Graph

[] [] [] [] [] []
TAU '05 — p.11

Transformation: RuleM1

Concurrency reduction move:

Transformation: RuleM1

Concurrency reduction move:

Ao

B
D

=5

\/G
H

®

*E

B
D
) :

JAY
_/\.C

® o E

Y

\‘G

H

Transformation: RuleM1

Concurrency reduction move:

Ao

B
D

=5

\/G
H

®

*E

B
D
) :

JAY
_/\.C

® o E

Y

\‘G

H

Transformation: RuleM1

Concurrency reduction move:

Ao

B
D

=5

\/G
H

®

*E

B
D
) :

JAY
_/\.C

® o E

Y

\‘G

H

Transformation: RuleM1

Concurrency reduction move:

Ao

B
D

=5

\/G
H

®

*E

B
D
) :

JAY
_/\.C

® o E

Y

\‘G

H

Transformation: RuleM1

Concurrency reduction move:
A A
- _/\.C - _/\.C
Dt $E mmp Dt E
F"\/G F”\' *G
H

H
A<B<D<F<H A<B<D<F<H
and and

A<C=<FEF<G<H A<C<FEF<B<D<F<H

Transformations:. RuleM 2

Concurrency reduction move:

Transformations:. RuleM 2

Concurrency reduction move:

Ao

B
D

=5

\/G
H

®

*E

B
D
) :

Y

\

Transformations:. RuleM 2

Concurrency reduction move:

Ao

B
D

=5

\/G
H

®

*E

B
D
) :

Y

\

Transformations:. RuleM 2

Concurrency reduction move:

Ao

B
D

=5

\/G
H

®

*E

B
D
) :

Y

\

Transformations:. RuleM 2

Concurrency reduction move:

Ao

B
D

=5

\/G
H

®

*E

B
D
) :

Y

\

Transformations:. RuleM 2

Concurrency reduction move:

A<B<D<F<H
and
A<C=<FEF<G<H

A<B<D<F<H
and
F<C<FE<G=<H

Transformations. RuleM 3

Redundancy removal

A
B
C

) -

From PS0O to PCO

Applying transformation rules
to protocol graph:

eeval s
odata s weeval s
I ~
odata d Todata s eeval s

eevald _—odatad Todata_s

LP*CS/ :gal_d /cl) data_d
reset_s LI‘C_S/ éal_d
N
!

reset s ePC s

reset d o reset

e

<

e PC_ / reset d
e PC d
Stage N-1 Stage N Stage N+1

[]
TAU '05 — p.15

From PS0O to PCO

Applying transformation rules
to protocol graph:

eeval s

odata_s eeval s
~

~—
~

odata. d Todata s eeval s

~—

eval? __—odatad “odata_s

tecs :gal d /(l) data_d

\o reset_s LI‘C/ eeval d
cl> eset_d \o reset_s iPC S
:{ l reset_d oreset_ s
o PC_ ireset d
ePC d
Stage N-1 Stage N Stage N+1

[]
TAU '05 — p.15

From PS0O to PCO

Applying transformation rules
to protocol graph:

Stage N-1 Stage N Stage N+1

[] [] [] [] [] [] [] [] []
TAU '05 — p.15

From PS0O to PCO

Applying transformation rules
to protocol graph:

ogial_s

1>Qat\a_s eeval s
(0]
/

data—eg— Sodata s eeval s

I eval d / — = l data_s
omw_d o data_d

[

N / K//

oreset. s ef&C s eeval_d

l N !

oreset d oreset s ePC s
:{C d ireset d \B reset

— / | L
&als :ﬁ:_d /i reset_d

<« ePC d

Stage N-1 Stage N Stage N+1

[]
TAU '05 — p.15

From PS0O to PCO

Applying transformation rules
to protocol graph:

eeval s
data s eeval s
-~

data—d——odata s eeval s

I eval_d elaffa:d\—\>1> data_s
-Mal d 5 data_d

A /

[
N) K//
oreset s » S eeval d
I N |
oreset d oreset s 2PC s
ePC d oreset d oreset_ s
// l
ePC d oreset d
i
e PC d
Stage N-1 Stage N Stage N+1

[]
TAU '05 — p.15

Deriving a L attice for the Design Space

Applying transformation rules Equivalent to walking down semi-lattice
to protocol graph:

<l> set d \%_reset_ lPC S
e ;) N

I PC_d set_d 1) reset_
th_d o reset
b
o eyat—s e PC_d
!
[

Stage N-1 Stage N+1 Semi-lattice = design space of pipeline protocols

[] [] [] [] [] [] [] [] []
TAU '05 — p.16

Deriving a L attice for the Design Space

to protocol graph:

eeval s
odata s weeval s
o data_d 0data s eeval s

eeval d __—odata_ d “odata_s

e Vel /i data_d

\o reset_s i#c_s/ :gal_d
l N !
o keset d reset s ePC s
\

oreset_s

Stage N+1 Semi-lattice = design space of pipeline protocols

» eval s

Stage N-1 Stage N

[] [] [] [] [] [] [] [] []
TAU '05 — p.16

Deriving a L attice for the Design Space

Applying transformation rules Equivalent to walking down semi-lattice

to protocol graph:

eeval s

odata_s eeval s

~

o data_d -~ ‘odat\a_s eeval s

eeval 4 __—odata_d T >% data_s

LI‘CS/ o‘éal_d /i data_d

\o reset_s i‘l‘C_S/ :gal_d
! AN |
o n oreset s ePC s
! N
o oreset_s

!

» eval s

Stage N-1 Stage N Stage N+1 Semi-lattice = design space of pipeline protocols

[] [] [] [] [] [] [] [] []
TAU '05 — p.16

Deriving a L attice for the Design Space

to protocol graph:

eeval s

oQat\a_s eeval s :
odata_d cjdat\a_s eeval s
eeval d odata d odata_s
— / — A
L\F?_S/ I‘gal_d {/i data d
1: reset_s oAI‘:C/ I eval_d
(0]

Stage N-1 Stage N Stage N+1 Semi-lattice = design space of pipeline protocols

[] [] [] [] [] [] [] [] []
TAU '05 — p.16

Deriving a L attice for the Design Space

Applying transformation rules Equivalent to walking down semi-lattice
to protocol graph:

\

Stage N-1 Stage N Stage N+1 Semi-lattice = design space of pipeline protocols

[] [] [] [] [] [] [] [] []
TAU '05 — p.16

Deriving a L attice for the Design Space

Applying transformation rules
to protocol graph:

eeval s

O <—0O

I PC d
eecval s
Stage N-1 Stage N Stage N+1

Equivalent to walking down semi-lattice

\

Semi-lattice = design space of pipeline protocols

[] [] [] [] [] [] []
TAU '05 — p.16

Deriving a L attice for the Design Space

Applying transformation rules
to protocol graph:

eeval s

Stage N-1 Stage N Stage N+1

Equivalent to walking down semi-lattice

\

Semi-lattice = design space of pipeline protocols

[] [] [] [] [] [] []
TAU '05 — p.16

Deriving a L attice for the Design Space

Applying transformation rules
to protocol graph:

eeval s

Stage N-1 Stage N Stage N+1

Equivalent to walking down semi-lattice

\

Semi-lattice = design space of pipeline protocols

[] [] [] [] [] [] []
TAU '05 — p.16

How Far Can You Move?

Protocol Graph:

e eval s

odata_s

-

o data_d

e cval d
Oy PC_s
N
o reset_s
o reset_d

e PC d

Stage N-1

e eval s

~ ™o data_s

o data
/

e eval d

-~

e PC s
\

o reset_s

<

o reset d

\

e PC d

Stage N

There exists a limit to the
number of moves one can
make

Moves beyond that results in
deadlocks

Corresponds to the “bottoms”
of the semi-lattice

[]
TAU '05 — p.17

How Far Can You Move?

Design Space Lattice: /
o b

\ Y
O)
A A
C (@) (@)
\ y
O (@) O
A
(@) (@) (@)
\ y
T (@] O
) ~ |
O (@) O
bottoms =
least concurrent €|> T
protocols | /
O g‘/

TAU '05 — p.18

How Far Can You Move?

Design Space Lattice:

04/0/ i top = most concurrent protocol

@))
\ \
C Q o
\ y
®) @) o

)
\J
O
\J

T 2) (S
s 5 s
bottoms =
least concurrent €|> T
protocols /
5 e

[] [] [] [] [] [] [] [] []
TAU '05 — p.18

Deriving the Top of the L attice

How much concurrency can we have?

Natural limits based on correct (safe) operation of
the pipeline implementation

Two dangers:

data overrun
reading stale data

Goal: derive a graph which corresponds to the most
concurrent protocol in the lattice

TAU '05 — p.19

Deriving the Top of the L attice

A different top for each logic design style:

PC[

F

EVAL—|

Footed dynamic logic
with separate controls

PC/
EVAL

Al

F

Footed dynamic logic
with single control

=L

PC/
EVAL<>| L

F

Non-footed dynamic
logic

Deriving the Top of the L attice

Most constrained protocol for pipelines using footed
dynamic logic with separate controls:

e eval s

e eval s
- =5 data_s
o data_d
e eval d
e PC s

o reset_s

o reset_d

e PC d

Stage N-1 Stage N Stage N+1

TAU '05 — p.21

Summary: Technical Approach

Most concurrent protocol
IS derived from
knowledge of the circuit
and its interaction with
data

Entire design space can
be generated from
successive applications
of transformation rules

Prevention of deadlocks
gives a lower bound to
the design space

® Protocols with
mappings to
existing designs

° Unmapped
protocols

TAU '05 — p.22

Summary: Key Contributions

Graph-based model of pipeline protocols: based on
partial ordering of data and circuit-level control events

Correct-by-construction transformation rules: for
systematic exploration of design space

A taxonomy of pipeline protocols: captured in a
semi-lattice with well-defined top and bottom elements

Handles several logic families:

dynamic
footed vs. non-footed
decoupled vs. unified control

static

TAU '05 — p.23

Related Work and Future Work

Related work

Furber et al. [1996] and Lines [1998]: family of pipeline
circuits with different interleavings of handshake signals

Blunno et al. [Async 04]: hierarchy of asynchronous
control circuits using static logic

None provided well-defined design space boundary, or
formal, systematic way for design space exploration

Future work
Synthesize abstract protocol to hardware

TAU '05 — p.24

	
	Why Study Asynchronous Pipelines
	Overview
	Asynchronous Pipelines: Protocols
	Asynchronous Pipeline: PC0
	Asynchronous Pipeline: PC0
	
eallybig Protocol Graph: a Single Dynamic Pipeline Stage
	Protocol Graph: PC0
	Asynchronous Pipeline: PS0
	Protocol Graph: PS0
	Graph Transformation: Basic Idea
	Transformation: Rule M1
	Transformations: Rule M2
	Transformations: Rule M3
	From PS0 to PC0
	Deriving a Lattice for the Design Space
	How Far Can You Move?
	How Far Can You Move?
	Deriving the Top of the Lattice
	Deriving the Top of the Lattice
	Deriving the Top of the Lattice
	Summary: Technical Approach
	Summary: Key Contributions
	Related Work and Future Work

