TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING

BARIS TASKIN, JOHN WOOD, IVAN S. KOURTEV

February 28, 2005

Research Objective

Objective: Electronic design automation and synchronization of digital IC systems with "rotary" resonant clocking technology.

Clocking at GHz

- Problems:
 - Low-skew low-jitter uncharacteristic
 - Timing violations
 - Power dissipation
- Some solutions
 - Multi-domain clocking
 - Skew-tolerant multi-phase clocking
- Alternative technologies
 - Optical clocking
 - Transmission-line based clocking

Resonant Clocking

Oscillator Type	Phase	Voltage
Coupled LC	Constant	Constant
Standing Wave	Constant Variable	
Traveling Wave	Variable	Constant

1: Abstract from IBM Research http://www.reseach.ibm.com/compsci/project_spotlight/vlsi/

Transmission Line

- Long interconnect
- L (variation with process) ≈1%
- C (Variation with process) < 30%
- Vp(variation with process) ≈15%

Mobius Termination

- Shunt connected inverters between lines
- $f_{osc} \sim 1/\sqrt{L}$
- 2 laps to complete 360° phase

Rotary Clock Waveforms

Waveforms for line voltage and line current at 2.4GHz

Rotary Clocking

- Low-jitter
 - ~6ps for 2.4GHz 0.25um
 - 1% of clock period
- Non-sinusoidal clock signal
 - 20ps rise and fall times (0.25um)
 - 5% of the clock period
- 16GHz theoretical upper limit in 0.25um

Rotary Cycles

- 360° Phase/ring
 - Multi-phase!
- No distribution, generated across the die
- Energy preserving
- Self-replenishing

ASIC Implementation

Capacitive Loading

- Reduce propagation velocity
 - Independent of parasitic capacitance
 - Increase current in wires, but no CV²f power

Rotary Wires for ASIC

Modes of Operation

ASIC drive

- Global rotary clock to synchronize any number of:
 - Derived clocks
 - Other global signals Reset, Enable, Step, Scan
- Retain standard FFs
- Minimal flow impact

Direct Drive

- Maximum power benefit.
- One high frequency clock grid over whole chip directly driving all FFs.
- Custom FFs for lowest power.
- Modified flow.

DFF Load

- High internal capacitance
 - High dynamic power consumption
- Direct drive: Rotary clock drives Nfet and Pfet pass devices directly

Latch Load

- Less clocked C: save CV²f power
- No need to gate clock (only data)

Rotary Modes

	Tree	Tree+Grid	Rotary-ASIC	Rotary-Direct
Power.	1	1.4	0.8	0.2
Skew.	1	0.2	0.1	0.05
Jitter.	1	0.2	0.1	0.05
Area.	1	1.5	1	1
Schedule		-	$\sqrt{}$	1
Multiphase	-		$\sqrt{}$	$\sqrt{}$
SERDES	-	-	$\sqrt{}$	$\sqrt{}$
Zero SSN			=	1

CAD: Extraction and Simulation

- RLC extraction for rotary
- RC for data
- Fast SPICE for confirmation
- Internal STA engine

Physical Design Flow

CAD: Placement & Route 1

- Select rotary rings
- Physical implementation

CAD: Placement & Route 2

- Identify
 communicating
 register-to register paths
- Partitioning
- Static timing analysis
- Clock skew scheduling
 - 28% average improvement
 - Parallelization

CSS Parallelization

- 10k registers 25k local paths
 - 2.5 hours
- 10*10 rotary clocking
- 150 registers 500 paths
 - 2 secs
- Speed up:
 - 44X without parallelization
 - 1286X with parallelization
- Sub-optimality

CAD: Placement & Route 3

- Pre-place register banks
- Map registers to phase
- Proceed with logic synthesis

Conclusions

- Look-ahead to next-generation
- Rotary clocking
- Non-zero clock skew
- Parallelization
- Implementation results to follow

TIMING-DRIVEN PHYSICAL DESIGN FOR DIGITAL SYNCHRONOUS VLSI CIRCUITS USING RESONANT CLOCKING

QUESTIONS?

DESIGN AND TIMING ANALYSIS OF LEVEL-SENSITIVE DIGITAL INTEGRATED CIRCUITS

BACKUP SLIDES

Clock Period Minimization Problem - 1

- Objective function : min T
- Problem variables
 - For each register R_i
 - Earliest/latest arrival times a_i , A_i
 - Earliest/latest departure times d_i, D_i
 - Clock signal delay t_i

Clock Period Minimization Problem - 2

- Problem Parameters
 - For each register R_i
 - Clock-to-output delay D_{CQ}
 - Data-to-output D_{DQ}
 - Setup time *S_i*
 - Hold time H_i
 - For each local data path $R_i \rightarrow R_j$
 - Data propagation time D_p^{if}

Practical Causes of Clock Skew

- Size Mismatches
 - Buffer Size, Interconnect length
- Process Variations
 - L_{eff}, T_{ox} etc.
- Temperature Gradients
- Power Supply Voltage Drop

Rotary Implementation

- Odd number of crossovers
 - Multi-phase
- Relative phase information on ring
 - Non-zero clock skew
- Cross-coupled inverters
 - Low power

Capacitive Loading of the Rotary Ring

• 4.5 pF each side

```
0.13u \times 10834 \text{ e-}18 / \text{micron [sq]} = 12.7 \text{ fF} on each gate
```

Assume 10 fF on each line for wiring cap. of spur

= 22.7 fF * 200 loads – 4.5 pF each side

Benefits of Rotary Clock Architecture

- No practical upper frequency limitation
- No practical size limitation
- Negates the dynamic clock power
- Guaranteed near-zero skew
- Precise skew scheduling possible
- Negligible jitter

Benefits of Rotary Clock Architecture (cont'd.)

- Largely independent of:
 - Process variations
 - Temperature variations
 - Supply voltage
- Inherently low noise
 - No SSN generated by clock.
 - Differential
 - Greater immunity to noise
 - Less generation of noise

Benefits of Rotary Clock Architecture (cont'd)

- Works for all existing IC processes
- Short and predictable design cycle
- Automated CAD tooling