

Statistical Static Timing Analysis: How simple can we get?

Chirayu Amin[†], Noel Menezes^{*}, Kip Killpack^{*}, Florentin Dartu^{*}, Umakanta Choudhury^{*}, Nagib Hakim^{*}, Yehea Ismail[†]

†ECE Department Northwestern University Evanston, IL 60208, USA *Intel Corporation, Hillsboro, OR 97124, USA

- Introduction
- Process Variation Model
 - Distributions
 - Cell-library characterization
- Methodology
 - Path-based
 - Add/Max Operations
- Results
- Conclusions

Variations and their impact

- Sources of Timing Variations
 - Channel Length
 - Dopant Atom Count
 - Oxide Thickness
 - Dielectric Thickness
 - Vcc
 - Temperature
- Influence
 - Performance yield prediction
 - Optimization
 - Design convergence
- Management (traditional)
 - 'Corner' based analysis
 - Sub-optimum

Recent solutions

- Categories
 - Block-based pdf propagation
 - Non-incremental
 - Incremental
 - Path-based pdf propagation
 - Bound calculation
 - Generic path analysis
- Complexity
 - Non-gaussian pdf propagation
 - Statistical MAX operation
 - Correlations
 - Reconvergence

Factors influencing solutions

- Predicting performance yield or optimizing circuit?
- Underlying process characteristics
 - How significant are the variation sources?
 - How significant is each component?
 - Die-to-die / Within-die
 - Channel length, Threshold voltage, etc
- Architecuture and Layout
 - Number of stages between flip-flops
 - Spatial arrangement of gates

SSTA targets

- Performance yield optimization
 - Die-to-die effects are more important
 - Can be handled using a different methodology
- Design convergence
 - Affected primarily by within-die effects
 - Gate's delay w.r.t. others' on the same die

Presented work addresses design convergence

Outline

- Introduction
- Process Variation Model
 - Distributions
 - Cell-library characterization
- Methodology
 - Path-based
 - Add/Max Operations
- Results
- Conclusions

•

Modeling variations

Only within-die effects considered

Main variations affecting delay: le and vt

Parameter distributions

- Gaussian distributions for le_s , le_r , vt_r
 - ullet Characterized by $\sigma_{les'}$ $\sigma_{ler'}$ σ_{vtr}

- ullet Systematic variation for le_s
 - Correlation is a function of distance

Cell-library characterization

- Simulations similar as for deterministic STA
 - Plus extra simulations for measuring ∆delay

effects of variations on delay

$$\sigma^{2}_{delay} = \sigma^{2}_{delay,les}(\sigma^{2}_{les}, tt, C_{L}) + \sigma^{2}_{delay,ler}(\sigma^{2}_{ler}, tt, C_{L}) + \sigma^{2}_{delay,vtr}(\sigma^{2}_{vtr}, tt, C_{L})$$

Overall delay variance is the sum of variances due to le_s , le_r , and vt_r

Measuring σ_{delay}

- lacktriangleright Characterization of $\sigma_{delay,les}$
 - Vary le similarly for all transistors in the cell $(\rho=1)$
 - Measure delay change for each input to output arc
- Characterization of $\sigma_{delay,ler}$ and $\sigma_{delay,vtr}$
 - Sample using Monte Carlo method
 - Each transistor sampled independently
 - Measure delay change for each input to output arc

Outline

- Introduction
- Process Variation Model
 - Distributions
 - Cell-library characterization
- Methodology
 - Path-based
 - Add/Max Operations
- Results
- Conclusions

Variation effects on a path

- Systematic variations
 - Additive effect
 - $(\sigma/\mu)_{path-delay} = (\sigma/\mu)_{cell-delay}$
 - Spatial effect
 - Paths close together have very similar delay variation
- Random variations
 - Cancellation effect
 - Variations die out as long as there are enough stages
 - $(\sigma/\mu)_{path-delay} = (1/\operatorname{sqrt}(n))*(\sigma/\mu)_{cell-delay}$
 - ITRS projections: n~12 stages

Paths converging on a flip-flop

- Distribution of delay for each path known
 - From simple path-based analysis
- Distribution of overall margin at flip-flop?
 - Statistical MAX operation!

Statistical MAX operation

MAX is trivial, and situations observed on circuits

Highly correlated, overlapping, comparable sigmas

Highly correlated, overlapping, different sigmas

MAX is non-trivial, but situations not observed on circuits

Comments about MAX

- Path-delays are highly correlated
- Sigmas are similar
- Random components die out due to depth

No need for a complicated MAX operation!!

Path-based SSTA methodology

Main Idea

Calculate the timing-margin distribution, for each path ending at a flip-flop or a primary output (PO)

Typical pathbased analysis

Calculating margin distribution

$$margin = t_{cs} + T - t^*_{CGD}$$
*includes t_{setup}

$$\sigma^2_{margin} = \sigma^2_{CS} + \sigma^2_{CGD} - 2 \cdot \cot(t_{CS}, t_{CGD})$$

- σ_{CS} delay sigma for path CS
- σ_{CGD} delay sigma for path CGD
- $cov(t_{CS}, t_{CGD})$ covariance between delays of CS and CGD

Above analysis requires calculating delay variances and covariances for paths → Statistical ADD operation

Statistical ADD

• Path delay variance is the sum of delay variances due to le_s , le_r , and vt_r

$$\sigma^2_{path-delay} = \sigma^2_{path-delay,les} + \sigma^2_{path-delay,ler} + \sigma^2_{path-delay,vtr}$$

Uncorrelated or Random Components

$$\sigma_{path-delay,ler}^2 = \sum_{i=1}^n \sigma_{i,ler}^2$$

$$\sigma_{path-delay,vtr}^2 = \sum_{i=1}^n \sigma_{i,vtr}^2$$

Correlated or Systematic Component

$$\sigma_{path-delay,les}^2 = \sum_{i=1}^n \sigma_{i,les}^2 \sum_{j=1}^n \rho_{ij} \sigma_{j,les}^2$$

Path-delay covariance

 Easy to calculate based on pair-wise covariances between individual gates

- Introduction
- Process Variation Model
 - Distributions
 - Cell-library characterization
- Methodology
 - Path-based
 - Add/Max Operations
- Results
- Conclusions

- Methodology applied to a large microprocessor block
 - More than 100K cells
 - 90 nm technology
 - Fully extracted parasitics
- Block-based (BFS) analysis to identify top N critical end-nodes (flop inputs, POs)
- Critical paths identified by back-tracking
- Path-based SSTA performed on the critical paths
- Comparison with Monte Carlo Analysis

Monte Carlo

- 600 dies (profiles) for varying le_s , le_r , and vt_r
 - Number depends on correlation distance, block size, etc
- Full block-based analysis (BFS)
 - Not just on critical paths
 - Deterministic STA on each of the generated 600 dies

*[16] S. Samaan, ICCAD '04

Good correlation with Monte Carlo Results!

- Error in predicting sigma
 - Maximum: 0.066 FO4 delay
 - Average: 0.19% of the path delay
- Monte Carlo showed that distributions of margins are Gaussian
 - No need for more complex distributions
 - At each end-node
 - Only one or two paths were clearly showing up as worst paths on 80% of Monte Carlo samples
 - Relative ordering of paths ending up at a node does not change

Outline

- Introduction
- Process Variation Model
 - Distributions
 - Cell-library characterization
- Methodology
 - Path-based
 - Add/Max Operations
- Results
- Conclusions

Conclusions

- Statistical timing is important
- Simple path-based algorithm is adequate
 - Justified based on design, variation profiles
- Distributions are Gaussian
- Errors in estimating sigma are acceptable

Q & A